QTATUNG

Instein

UKEUG Newsletter Feb 1987 page 58

UK EINSTEIN USER GROUP
NEWSLETTER

Volume 2 Number 4 February 1987

CONTENTS
REGULARS
Edlitorial S iad it vaniliton s Page 58 Getting there
BEEEEE S i s lils siiae winliohe s o ebale alal Back Page Your page for comments
AdventHEe s ol vl ol - tes - Back Next Month
BOOB S S & Bt el e Page 59 This will probably become a

regular however hard we try.
REVIEWS

MODULAZ s s o st el ohialles o ot fs i ol st s Page 72 what it is, how it works and
why you should get it

EINSTEIN 256 .« e s s Page 63 A realistic appraisal from an
ex Einstein user.

A R . e ol et e L Page 75 Amstrad simulation without
tears

FEATURES

STRUCTURE OF BASIC.....:::.. Page 61 For those who wish to add
their own routines to it

DI SC DIRECTORIES . .« s o0 Page 63 What they really are

ALLSORTSENOS3 T 0ol ot o oo . Page 64 Now it's up to you

) RS SRS N S

SUBMIT FOR THE EINSTEIN..... Page 67 A must for the serious

CALCULATOR . ¢ -l o vt o it . Page 65 Do 'BASES' confuse you, here's
the answer

AR op N PAST ar . D PIERUIRE R 53T 5 o Page 58 Using the 25th line to put
your messages on

SPECIAL NOTE........ o e 5 Y A Page 61 Read it

EDITORIAL

There really does seem to be a resurgence of interest in the Einstein,
not only from our members, who are beginning to send us some good
stutf, (keep it coming in) but also from the outside world. A lot of
it may be rumour but we KNOW of a couple of upgrades in the pipeline.
We will keep you informed as and when more concrete information comes
our way.

The Amstrad Emulator in this issue looks to be well worth looking at
along with the utilities from the same house. MATMOS at Lingfield can
still supply 3" drives, single sided at £29.95 + vat and double sided
at £39.95 + vat. Cables are £10 + vat. (Tel 0444 73830)

Now we change to Humble mode. Apologies for the print and photo copy
quality. this is due to new ribbons on the printer and the photocopier
over-running 1it's service date. (Beyond our control) If we can get
another 50 members we should be able to go into PRINT so get out there
and encourage everyone you know with an Einstein to join instead of
lending them your copy!

No response to our suggestion about a bulletin board. Do you want
one??2?

Did anyone note the deliberate mistake in last months issue. PAGE 49A.
I don't know what came over me, I can usually count better than that.
Thanks to Keith for coming to the rescue when he put it to bed. I
would not have been at all popular if you had all been looking at a
blank page. Enough of this drivel, 1lets get on with getting this one
on the road and in the post and put to bed and through your
letterboxes.

UKEUG Newsletterxr Fel 1987 ppage 59

BOOBS
Diary. Graham Higgins
I managed to get your Diary program working (UKEUG Newsletter November
V2 No.l). I have some corrections and an improvement.

1. The wvariable N$ never receives an assignment and 1s therefore
redundant, thus;

Line 205 should be deleted and the N$ in line 30 also deleted

2. Line 305 is an error and should be deleted.

3. In line 310, vyou have neglected to account for the case where
I+8>D, 1i.e. where T$ ("today") is, for example 12/28. The indexing
of the D$ and M$ string arrays by the variable F should be replaced
by F MOD 366:

D$(F MOD 366) and M$(F MOD 366)

4. There are a couple of changes required for the FIRST run of the

program, i.e. before the data file is created.
% the GOTO in 1line 20 should be changed to GCOTO 500,
(temporarily).
* line 190 should be temporarily renumbered as 191
¥ a new line 190 should be inserted:
190 CREATE "DIARY.DAT",FD$:CLOSE
¥ line 500 should have :GOTO 80 appended
The program c¢an now be run. AFTER the DIARY.DAT file 1is created-

(which must be done by adding a message to the diary apparently),
the GOTO 500 in line 20 can now be replaced by GOTO 200
Line 191 can be renumbered to 190 and line 191 deleted.
lines 500 to end of file can be deleted.

Incidentally, here's a way of reducing some of the tedious DATA

statement typing:-

Replace lines 00 to 980 with:-

500 DIM BS$(12)

510 DATA 31,28,31,30,31,30,31,31,30,31,30,31

520 FOR X=1 TO 12:READ B$(X):NEXT:C=0

530 FOR X=1 TO 12:FOR Y=1 TO EVAL(BS(X))

540 DS$S(C)=STRS(X)+"/"+STRS$(Y):C=C+1

550 NEXT Y:NEXT X:GOTO0O80
Two other changes are neccessary, IOM 5,0 should be entered as line 5
and IOM 5,1 should be entered as line 194.

Ed's Note. Thank you very much for your comments, our only excuse is
that the original program was written on and for a Video Genie and
ported across to the Einstein on the RS232. Some changes were then

made but only enough to get it working.

25 LINE TEXT by Stephen Eccleston

following program allows the user to type, edit and display a
sage on the 25th line of the 80 column display. The message will be
played so long as the screen is cleared only with 'HOME (1EH) and
EOS' (16H), as detailed in the Einstein User, volume 2 No.l page 4.

would also be useful to see a count of the number of characters
typed in the message, on the screen, but I have not yet been able to
urn the Hex value in the 'B' register into a decimal value and print
it to the screen. Can you help with this, or perhaps a reader might
have the answer.
;THIS PROGRAM ACCEPTS OPERATOR INPUT TO GENERATE A 25th LINE

|

oo

[)n
-l U) n o

lTJ

ORG 100H

LOAD 5000H
TEXT: EQU 800O0H
BDOS: EQU O0O0O5H
LONG: EQU 50H
MESOUT: EQU O9H
ESC: EQU 1BH
GS: EQU 1DH

LINE24: EQU 17H

UK EUG

COL1:
SPACE:
HOME :
CTEOS :
DOLLAR:
DEL:
CURSOR:

CLTEXT:

NSPACE:

DISP1:

LOOP:

FINISH:

’
PROG25:

’
DELETE:

EQU 0

EQU 20H
EQU 1EH
EQU 16H

EQU 19H
EQU 5FH

News lettiter

;Code to home the cursor
;Clear to end of screen code
EQU 24H i $

Terminating Char with MESSOUT

;Cursor Character ' !

; START:RST 8
;DB OD3H; INITIALISE 80 COL CARD

’
;CLEAR TEXT AREA-FILL WITH SPACES 20H

7
LD HL,TEXT
LD A,SPACE
LD B,LONG
LD (HL),A
INC HL
DJNZ NSPACE
RST 8
DB OBFH;

’
LD DE,MESS1
LD C,MESOUT
CALL BDOS

;START OF TEXT BUFFER IN MEMORY
;Character to £ill buffer with
;Length of text buffer

;Store space in text buffer
;increase pointer in memory
;repeat until 'B' reg =0

DISPLAY EINSTEIN LOGO

;PRINT OPERATOR PROMPT MESSAGE

;ACCEPT 80 CHRS USING MCAL SCH

LD B,LONG
LD HL,TEXT
LD D,H
LD E,L

LD (HL),CURSOR

CALL PROG25
RST 8

DB 9CH

CP ODH

JR Z,FINISH
CP DEL

JR Z,DELETE
LD (HL),A
INC HL

LD (HL),CURSOR

CALL PROG25
DJIJNZ LOOP
CALL PROG25
LD DE,MESS?2
LD C,MESOUT
CALL BDOS
RET

PUSH HL
PUSH DE
PUSH BC
RST 8
DB OD4H
POP BC
POP DE
POP HL
RET

CALL CHKLH
JR Z,LOOP

LD A,SPACE
LD (HL),A

DEC HL

;loop counter

;start of text buffer
;pointer for

;25th line MCAL

;call the programming routine
;get char from keyboard
;using MCAL

;is it carriage return?
;YES so jump to end

;is it a DELETE character
;YES so go and delete
;ELSE store it

;increase loop counter

7

;call programming routine
srepeat till 'B' reqg = 0
;program the 80 col card
;message to CTEOS and HOME
;

;

return to system

;save text buffer pointer

;save text pointer
;save loop counter

;at L.H. end of line 7
;YES so return

;erase Ccursor

Fel 1987 page

UKEUG Newsletter Feb 1987 page 6 1

INC B
LD (HL),A ;erase last character
LD (HL),CURSOR
CALL PROG25 ;program with new line
JR LOOP
7
CHKLH: PUSH HL ;save text buffer pointer
PUSH DE ;save start of text
EX DE,HL ;put pointer in de
SBC HL,DE ;set zero flag if at L.H.end
POP DE ;restore text start
POP HL ;restore text buffer pointer
RET
4
MESS1: DB ESC,GS,COL1,LINE24
DB ‘TYPE YOUR MESSAGE TO BE !
DB 'DISPLAYED.......uov...
DB 'MAXIMUM 80 CHARS. CR TO END..'
DB '...... ' ,DOLLAR
MESS2: DB HOME,CTEOS, DOLLAR
4
END

REPAIRS
SCS Components of 218 Portland Rd., Hove Sussex (Tel 0273 770191)
will repair your Einstein. Either take it in or send it to them in the
post and they will effect repairs as quickly as they can. They also
supply all manner of bits and pieces and if they haven't got it they
will get it.

THE STRUCTURE OF BASIC Chris Giles
There are a number of facilities that are missing in BASIC, such as a
REM FILL to remove all REM statements after completeng a program ¢to
make it run faster, or a routine to replace all the long wvariable
names with single letter varlables, again to make it run faster or
give more working space once it is debugged.
In order to write routines that alter a BASIC program in any way it is
essential to know something about the way the program is stored in
memory and hopefully this article will give some clues on just this.
First of all the KEYWORDS are held in memory as TOKENS, i.e. each time
you type in PRINT at the keyboard in a program line it is converted Lo
Hex: A2 (decimal 162). This is done to save space but can be a bit
confusing when looking at memory. To help you I have listed them all
below along with a little routine to check them out yourself.

10 GOTO30
28 2 ¢
30 FOR X=128 TO 245

40 POKE &3EOE,X

50 PRINTX,HEX$(X,2),:LIST20,1,20
60 NEXT

70 FOR X=&3E00 TO &3EBF

80 A=PEEK(X)

90 PRINTHEXS$(A,2),
100 NEXT

The action is in line 20. Line 40 pokes the TOKENS into location &3EOQOF
which is the memory location where the KEYWORD between the two colons
is stored in line 20. Line 50 Prints the TOKEN (X) and then Lists line
20 only, giving the actual keyword. We start at 128 because all the
TOKENS have bit 7 set.

UKEUG Newsletter Felb 1987 padge G 2

Here is the 1list.

80 AUTO A0 POKE co TIS E0O ERR
81 CHAIN Al POP Cl TEMPO El ERL
82 CLEAR A2 PRINT C2 VOICE E2 EOF
83 CLOSE A3 READ C3 PSG E3 FN
84 CLS A4 REM C4 ABS E4 INCH
85 CONT A5 RENUM C5 ASC E5 KBD
86 CREATE A6 UNPLOT C6 ATN E6 MULS
87 DATA A7 RESTORE C7 CHRS E7 NOT
88 DEF A8 RETURN C8 COS E8 PI
89 DEL A9 RUN C9 DEEK E9 SIZE
8A DIM AA SAVE CA EVAL EA 234
8B DOKE AB PLOT CB EXP EB 235
8C DRIVE AC STOP CC HEXS EC 236
8D ELSE AD SWAP CD INP ED 237
8E END AE VERIFY CE INT EE 238
8F FOR AF WAIT CF LEN EF 239
90 GOSUB BO FMT DO LN FO 240
91 GOTO Bl APPEND D1 LOG Fl1 241
92 HOLD B2 DIR DZ PEEK F2 242
93 IF B3 ERA D3 POINT F3 243
94 INPUT B4 LOCK D4 POS F4 244
95 LET B5 REN D5 RND F5 245
96 LIST B6 UNLOCK D6 SCRNS F6 246
97 LOAD B7 MUSIC D7 SGN F7 247
98 MGE B8 CALL D8 SIN F8 248
99 MOS B9 IOM D9 SQR F9 249
9A NEW BA NULL DA STRS FA 250
9B NEXT BB PTR DB TAN FB 251
9C OFF BC SEP DC VAL FC 252
9D ON BD SPEED DD LEFTS FD 253
9E OPEN BE WIDTH DE MIDS FE 254
9F OUT BF ZONE DF RIGHTS FF O
The ones here are the Standard Reserved Words. The Auxiliary Reserved

Words are not listed. (Try writing a routine to list them)

The second part of the program from line 70 to line 100 will 1list the
program as it is stored in memory in hex.
This is the equivalent MOS tabulation:-

3E01 08 00 OA 00 91 33 30 00 10 GOTO30
3E09 08 00 14 00 3A 20 3A 00 20 : :
3E11 12 00 1E 00 8F 20 58 7E 30 FOR X=128 TO 245
31 32 38 20 72 20 32 34
35 00
3E23 OE 00 28 00 A0 20 26 33 40 POKE &3EOE,X
45 30 46 2C 58 00
3E32 18 00 32 00 A2 58 2C CC 50 PRINTX,HEX$(X,2),:LIST20,1,20

28 58 2C 32 29 2C 3A 96
32 30 2C 31 2C 32 30 00
3E4A 06 00 3C 00 9B 00 60 NEXT
3E4F 16 00 46 00 8F 20 58 7E 70 FOR X=&3E00 TO &3EBF
26 33 45 30 30 20 72 20
26 33 45 42 46 00

365 0B 00 50 00 41 7E D2 28 80 A=PEEK(X)
58 29 00
3E71 OD 00 5A 00 A2 CC 28 41 90 PRINTHEXS(A,2),
2C 32 29 2C 00
3E7F 06 00 64 00 9B 00 100 NEXT
3E85 00 End Of Program Delimeter

3E86 00 00 00 00 00 28 7A 8E Rest of memory

UKEUG Newsletter Feb 1987 page 6 3

It all looks very confusing, doesn't it? Well hang on in there.

The program listing actually starts at 3E01, so this is where to start
to decipher the (very) cryptic code.

The first two bytes give the number of characters in the following
ne, so 08 00 gives 08decimal. The next two bytes together give the
ne Number, so OA 00 when converted gives 10decimal. The next byte is

B
fte

the TOKEN for GOTO followed by the ASCII code for the line, 1i.e. 30.
The next character is the End of Line character which is Zero.

So our first line is made up of

1) the number of characters in the line

2) the line number

3) a TOKEN for the KEYWORD

4) the parameters relating to the KEYWORD in ASCII

5) the End of Line Delimeter.

the next line is also 8 bytes long, and so on.

NOTE The way to calculate line numbers (or line lengths) is to convert
BOTH bytes to decimal, multiply the SECOND by 256 and add to the
first. In this short program the second byte is always Zero so can be
ignored but as an example the Line No. 1000 would be stored as E8 03.
(3*%256=768 + 232) (E8hex is 232decimal)

DISC DIRECTORIES C.P. WALLIS February 1987

There is an error in the article on Discs in the November issue of
the Newsletter which is reprinted in the December issue. Directory
entries do not "form what is known as a File Control Block (FCB)".
FCB's should normally only be found in RAM: they are in fact records
which programs must format for the purpose of accessing files. The
first 14 (and possibly the last 3) bytes of the FCB are written by
the program and the remaining 19 bytes are filled in by DOS when the
file is opened, by copying from the directory entry on the disc. A
directory entry occupies 32 bytes and at least one must be
continuously present for each file on the disc; an FCB is only
required when the file is in use.

An FCB for an opened file is therefore almost a copy of the
directory entry, so the article on Discs will be almost correct if
you replace 'FCB' with 'directory entry'. Although there are minor
differences which result from file processing, there is one major
difference which the article implies does not exist: this concerns
the first byte, which in an FCB specifies the drive to be read
whereas in a directory entry the first byte is the user code.
Program wuser codes can be any number from 0 to 31, but command user
codes are restricted to values less than 16. The purpose of user
codes is to be able to keep your files in separate pigeon-holes: you
will normally only be able find (with DIR or when opening) files in
the current user area.

Unfortunately you can't do much with user codes because (a)
there are no commands to implement them and (b) Einstein DOS takes
every opportunity to change your user code back to zero. I have a
set of enhanced commands to implement wuser codes and I hope to
complete debugging them shortly and make them available.

EINSTEIN 256 Vic Day

At the National Einstein User Show in November I was able to talk to
Roy Clark and David Bell about the 256. As a result I put the old
Einstein up for sale and a month later I bought the 256.

It is, as you said at the show, not a great deal better in performance
than the Einstein apart from the graphics which are really something,
the screen, which 1is called Hi-Res is much better than the old
Einstein for 80 column resolution and is easily readable, but in terms
of resolution I think it should be medium Hi-Res, a true Hi-Res can

UKEUG Newsletter Feb 1987 page 64

cost hundreds of pounds, but the 256 monitor is more than adequate.

I have rewritten a few programs with the graphics which show the
superiority of the 256 over the Einstein as you can have several
colours within the pixel area, the Einstein sets the colour to
whatever the last colour set in the area of the pixel.

Martin Page writing about his visit to the Tatung factory comments
that he never saw any 256's on the 1line, well that is easily
explained, the computers are maid in Taiwan and the monitors only are
British made.

He also mentioned that they are not in the shops, well I had no bother
getting one from Screens. There does however seem to be a lack of
information about the second disc and on the printer 1lead. Screens
have been looking into it for some while without result, and a queery
to Tatung about the parrallel interface has brought no result.

1 didq, however get a quick reply from David Bell about the
compatability with the Einstein with such programs as Wordstar,
Cracker etc. When I first booted these up all I got on the screen was

a series of graphic symbols where the text should be. The cure was
simple, whilst still 1in MOS enter L1 to select the ASCII character
set. It was unfortunate that David's letter said select L2 which

gselects the German character set which doesn't work, however 1t was
obvious what the fault was.

From my six weeks experience with the 256 I find it much easier to use
than the Einstein, it has proper cursor keys with no need to use SHIFT
to select right or up. It took some time to find the RESET key which
is not surprising since one doesn't exist, however by pressing Ctrl,
Alpha Lock and Graph at the same time you get a RESET, a combination
of keys that you are not likely to press accidently.

A couple of minor grouses about the newsletters, firstly I wish you
would put the authors name at the front of the article, sometimes a
new article runs straight after a previous article without heading or
the authors name, secondly the printing gets very faint at times
making it difficult to read, which is even worse if it occurs during
an listing.

ALLSORTS NO 3 Chris Giles

All sorting routines are a compromise between time, space and effort.
The Exchange sorts, as we have seen, are small in size and easy to
program but tend to take their time. Sorts based on Binary trees and
recursion are very quick and efficient but are very difficult ¢to
program (I haven't attempted one yet).

The best all round sort that I have come across is the SHELL sort,
named after it's inventor D.L.Shell. It is only slightly harder to
program than the exchange sorts and takes up little more room, if any.
The SHELL sort runs quickly because it makes fewer passes on average
than other sorts. It does this by comparing half the table size apart,
then it compares items a quarter of the table size apart, halving the
distance apart of the items compared till the distance 1is 1, or
adjacent items. For example if it is sorting a table of 64 items it
will compare 1 and 33, then 2 and 34, then 3 and 35. When that pass is
finished it will compare 1, 17 and 33, then 2, 18 and 35 and so on
until the gap is 1. At this point it becomes a straight exchange sort
but nearly all the items are sorted and only a few exchanges are
needed to complete the sort. For greatest efficiency the gap needs to
be chosen carefully. The ideal gap is between N and half N (N being
the table size) so that when the gap is halved for the next pass it is
an odd number. The way to get to this is the biggest power of 2 that
will fit into the table minus 1.

Example:= table size biggest power of 2 to fit minus 1
100 64 63
200 128 127
400 256 255

1000 512 . 511

UKEUG News letter Feb 1987 Page 65

From BASIC this can be set by GAP%=2"INT(LOG(N)/LOG(2))-1
No I don't really understand the maths either but IT WORKS.
Now for the program:-
10 INPUT"NO OF ENTRIES ";N
20 DIM ENTRYS$(N)
30 FOR ENT=1 TO N
40 READ ENTRYS$(ENT)
50 NEXT
60 CLS
70 FOR ENT=1 TO N
80 PRINTENTRYS$ (ENT);" ";
90 NEXT
100 TI$="000000"
110 PRINT:PRINT"SHELL SORT";TIS$:ENT=N
120 GAP%=2"INT(LOG(ENT)/LOG(2))-1
130 IF GAP%<1 THEN GOTO 300
140 FOR PNTR =1 TO ENT-GAP%
150 FOR PNTR1=PNTR TO 1 STEP -GAP%
160 REM
170 IF ENTRYS$(PNTR1)>ENTRYS (PNTR1+GAP%)THEN SWAP
ENTRY$ (PNTR1) ,ENTRY$(PNTR1+GAP%) : ELSE GOTO 280

180 REM 230 REM
190 REM 240 REM
200 REM 250 REM
210 REM 260 REM
220 REM 270 NEXT PNTR1

280 NEXT PNTR

290 GAP%=GAP%/2:GOTO 130

300 T$=TIS$

310 PRINT"SORTED ";N;" ITEMS IN ";TIS
320 FOR ENT=1 TO N

330 PRINTENTRYS(ENT);" ";

340 NEXT
No to sort Time
sorted list Unsorted list
10 0 0
20 1 1
40 2 4
80 6 11

As you can see this compares very favourably with the unsorted 1list
times for our previous sorts, but can be regarded as slow for a
completely sorted list. I have put in REMs to make the program as long
as the previous ones and there is some improvement when these are
removed. The tests can be done in exactly the same way as last months
tests. Try improving this one for the case of a sorted list?

CALCULATOR
A multi base calculator unashamedly filched by GEO (G3ZQS)
Will perform addition, subtraction, multiplication and division in any
or all of four BASES, being Decimal, Hex, Octal and Split Octal.

10 CLS: PRINT@05,10;CHR$(173);MUL$(CHRS(177),29);CHRS (181)

20 PRINTTAB(6);CHRS$(181);" ** FOUR-BASE CALCULATOR ** ";CHRS$(181)

30 PRINTTAB(6),;CHR$(181);"UNASHAMEDLY FILCHED BY G3ZQS ";CHR$(181)

40 PRINTTAB(6);CHRS$(189);MULS(CHRS(161),29);CHRS(181)

50 FOR PAUSE=1 TO 4000:NEXT:CLS

60 PRINT:PRINT"TO USE THE CALCULATOR, PREFIX VALUES IN THE
EXPRESSION WITH THE APPROPRIATE CODE"

70 PRINT:PRINT"CODES ARE:";TAB(15);"DECIMAL T
80 PRINT TAB(15);"HEXADECIMAL H"
90 PRINT TAB(15);"OCTAL oM

100 PRINT TAB(15);"SPLIT OCTAL S"
110 PRINT:PRINT"EXPRESSION: T1234+42345=H

UKEUG Newsletter Felb 1987 page

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

PRINT"EXPRESSION IN DECIMAL: ANSWER IN HEX"
PRINT:PRINT"EXPRESSION: HOOBA=T
PRINT"EXPRESSION IN HEX:ANSWER IN DECIMAL"
PRINT:PRINT"BASES MAY ALSO BE MIXED - THUS..."
PRINT"EXPRESSION: T1234+HBO1lE=Q
PRINT:PRINT"FUNCTIONS PERMITTED ARE + - * /"
PRINT:PRINT"PRESS SPACE TO CONTINUE"

X=INCH:IF X=32 THEN CLS:ELSEGOTO 190
BCOL14:TCOL6,14:CLS

PRINT:PRINT"CODES ARE:";TAB(15);"DECIMAL ™
PRINT TAB(15);"HEXADECIMAL H"
PRINT TAB(15);"OCTAL Q"
PRINT TAB(15);"SPLIT OCTAL S"

PRINT:PRINT
B=1:BS$="DEC"

M=0
PRINT@O0,10
INPUT" EXPRESSION: ";ES

IF LEFTS$(ES$,1)="H"ORLEFTS$(ES$,1)="Q"OR LEFT$(ES$,1)="S"OR
LEFT$(ES$,1)="T"THEN330

PRINT:PRINT"YOUR VALUES ARE NOT PREFIXED."

PRINT"PLEASE TRY AGAIN !":GOTO 180

FOR A=1 TO LEN(ES)

X$=MID$(ES$,A,1)

IF X$="T" THEN B=1:B$="DEC":GOTO 480
IF X$="H" THEN B=2:B$="HEX":GOTO 480
IF X$="Q" THEN B=3:B$="OCT":GOTO 480
IF X$="S" THEN B=4:B$="0CS":GOTO 480
IF X$="+4+" THEN M=1:GOTO 620
IF X$="-" THEN M=2:GOTO 620
IF X$="%" THEN M=3:GOTO 620
IF X$="/" THEN M=4:GOTO 620
IF B=4 AND X$=" " THEN 470
IF X$="=" THEN V=T:GOTO 620

IF (X$<"0" OR X$>"F")GOTO 660

IF (X$>"9" AND X$<"A") GOTO 660

H$=HS$+X$

NEXT A

ON M GOSUB 580,590,600,610

IF E=1 GOTO 660

S=T

ON B GOSUB 1020,790,940,940

IF E=1 GOTO 660

PRINT

Z=LEN(E$) -2

PRINT"YOUR ";LEFT$(ES$,Z);" EQUALS ";H$;" ";BS$
T=S:H$="":GOTO 1030

T=V+T :RETURN

T=V-T:RETURN

T=V*T:RETURN

T=V/T:RETURN

IF LEN(H$)>0 THEN ON B GOSUB 1010,710,850,850
IF E=1 GOTO 660

H$="":GOTO 480

RUN

PRINT:PRINT"SORRY, ";E$;" IS NOT"
PRINT"A VALID EXPRESSION"
PRINT:PRINT"PRESS SPACE TO RE-START"
X=INCH:IF X<>32 THEN 690

E=0:CLS:GOTO 210

T=0:E=0:X=1

FOR I=LEN(H$)TO 1 STEP-1

H=ASC(MIDS$ (H$,I1,1))-48:IF H>9 THEN H=H-7

J—

UKEUG Newsletter Feb 1987 page 6 7

740 IF (H<O0 OR H>15) THEN E=1:RETURN
750 T=T+(H*X)

760 X=X*16

770 NEXT I

780 RETURN

790 H$="":X=4096:E=0:IF (T<0 OR T>66535) THEN E=1:RETURN
800 H=INT(T/X):T=T-(H*X)

810 H=H+48:IF H>57 THEN H=H+7

820 HS=H$+CHRS (H)

830 X=X/16:IF X<1 THEN RETURN

840 GOTO 800

850 T=0:E=0:X=1

860 FOR I=LEN(H$) TO 1 STEP-1

870 H=ASC(MID$(HS$,I,1))-48

880 IF H=-16 THEN X=256:GOTO 920

890 IF (H<O0 OR H>7) THEN E=1:RETURN

900 T=T+(H*X)

910 X=X*8

920 NEXT I

930 RETURN

940 H$="":X=32768:E=0:IF (T<0 OR T>65535) THEN E=1:RETURN
950 IF B=4 THEN X=16384

960 H=INT(T/X):T=T-(H*X)

970 H=H+48

980 HS=HS$+CHRS$ (H)

990 X=X/8:IF X<1 THEN RETURN
1000 GOTO 960
1010 E=0:T=VAL(H$) :RETURN
1020 E=0:H$=STRS$(T) :RETURN

1030 PRINT:PRINT"ANY MORE? "
1040 Q=INCH
1050 IF Q=78 OR Q= 110 THEN BCOL4:TCOL15,4:CLS:END
1060 IF Q=89 OR Q= 121 THEN CLS:GOTO 200
1070 ELSE GOTO 1040

EINSTEIN SUBMIT

Introduction

The purpose of SUBMIT is to provide flexible chaining of
commands without any operator intervention at runtime. This is mainly
useful where the same sequence of commands is used repeatedly or if
they have lengthy argument lists.
It 1is first necessary to write a file containing the commands exactly
as they would be entered normally at the DOS prompt from the keyboard.
Any editor can be used to produce this command file, which must then
be converted to a submit file using one of the public domain
submit editors. Some of these editors are capable of generating the
submit file directly from the keyboard.
Under CP/M80 the SUBMIT file would be run automatically at this
stage, providing it had been placed on the boot drive, and the
commands in the file read until it was empty.
Specification

The Einstein SUBMIT is designed to minimise the alterations
required by making extensive use of the existing software. It
conforms to CP/M SUBMIT protocol (as far as I can ascertain
without full documentation) with the following differences:

(1) The submit file can be placed on any drive.

(2) The run must be started with a short initialising program.

(3) A capability to program return codes and a data pointer are

available.
(4) Warm booting occurs normally: it is neither forced nor
pre-empted.
(5) It is compatible with warm-booting from a silicon disc.

UKEUG Newsletter Felbh 1987 pade o B

Input redirection (that is reading keyboard input requests from
disc) is provided 1in a separate program which is only wused when
required. This program reduces the available (TPA) memory by 2.5KDb
when it is activated.

It should be possible to call any program from a submit file
provided that (a) it runs on the Einstein from a normal DOS prompt
command and (b) that it does not stop until it is finished. Where
input redirection is required, there are some restrictions.

Installation
Reformat a spare disc and try out the changes before copying to
other discs.
It 1is first necessary to alter the instruction sequence in DOS. The
changes are specified in SUBPATCH.TXT and can be inserted using MOS R,
M and W instructions, or more readily using a disc editor. If you don't
understand how to do this spend an evening finding out what these
instructions do or ask someone who has already tried patching.
There are several alternative instructions in SUBPATCH.TXT:
(A) a dummy instruction at 0E200H is required until you have
installed INSUB.
(B) 1if you wish to warm-boot from a silicon disc use 03H here
(I am assuming that you have already organised code to load
the operating system on to the silicon disc).

(C) the ERA command can be made to continue without
stopping for confirmation by including this modification.
If you do not insert the modification you will either
have to type 'Y' at the appropriate stage or make use

of INSUB.
Note that the sequence of code starting at OE163H is relocatable and
if you already have code here, it can easily be moved to a

higher address by adjusting the two entry point Jjumps.
The altered operating system should now be tested by putting the disc
in drive 0 and entering a variety of commands. There should be no
discernible difference. If you should need to put another disc
in drive 0, press CONTROL-BREAK after putting the altered disc back
for the next test.
When you are satisfied, the submit routine in EINSUB.OBJ

can be installed. Type:

LOAD O0:EINSUB.OBJ

MOS

R AB0OO ACFF 0500 O

C 0100 01FF ABOO

W ABOO ACFF 0500 O

I find it useful to wuse the T instruction to check that the code
has been placed where intended.

INSUB.OBJ is 1installed in the same way, except that the
arguments for R and W are AAQ00 ABFF 0 O.

NOTES on installation

(1) Do not alter the operating system in use at the top of
memory:loading addresses should be in the range 4000H to
ODFFFH.

(2) 1If the alterations in SUBPATCH.TXT are written to drive 1,
you can install them in stages. It is probably better to
make a backup file first, then LOAD it and write it to disc
in one operation.

(3) The whole operation can be done from MOS (if you can find
the files) but there are numerous utilities which assist
the procedure: disc editors, linkers, debuggers etc. Their
capabilities vary agreatly, so use only those with which

UKEUG Newsletter Feb 1987 page G 9

you have experience and you will know where they can
help.

(4) T find that ZEN provides most of the required facilities in
a simple form, and you can toggle in and out of MOS for
reading and writing (ZEN -> MOS: GO038H, MOS -> ZEN: Y).

(5) These instructions, and the object files supplied, are for
DOS wversion 1.31. For DOS version 1.11 you will have to
assemble the source files and test them with the conditions
altered appropriately. Note that the destination and length
in the C instruction above must also be altered.

Instructions

Use yvour submit editor to generate a submit file from an
existing command file or from the keyboard. Make sure that the submit
file is on a disc which has EINSUB installed (EINSUB is not strictly
necessary on other discs but life will be simpler if you also have
EINSUB in drive 0).

Now, if the file has been placed on drive 1, type:
SUBSTART 1:
The drive may be omitted as usual 1f the file is on the default drive.

SUBSTART is a short program, and if you want an automatic
start, it should not be difficult either to add it to the exit
routine of your submit editor or possibly to chain it.

If EINSUB stops in the middle of a run (possibly as a result of
changing a disc), try continuing by calling SUBSTART. A subnmit run
may be aborted (for example if you have used the wrong file) by
pressing SHIFT-BREAK.

Extended facilities

EINSUB allows programs to return (a) a code and (b) a pointer when
they finish to provide parameters to a following program.

The code must be written to address OFAFDH. Certain values are
reserved. The full range is:

0 - EINSUB not active (program running from keyboard)
1 - EINSUB activated: initial default value
2-127 - available to programs as return codes (not

altered or used by EINSUB during the run)

128-254 - request for submit to be aborted at end of
current program
255 - command error
It is the responsibility of the programmer to ensure (1) that any

codes set are-set back to 1 (or some other available code) when they
have been read and (2) that no code is set when the program is
run independently from the keyboard. This is done by testing
address OFAFDH: zero 1indicates keyboard control (no alteration
allowed), non-zero indicates SUBMIT control.

The pointer address 1is OFAFEH. Under keyboard control it
contains OFFFFH, which is initialised to zero by SUBSTART. A
simple sequence to determine the pointer status is:

LD A, (OFAFFH) ; test high byte

OR A
JR Z,K
INC A
JR 72,1
L: ; address loaded
K: ; initialised, no address loaded

I: ; under keyboard control (but can still be altered)

UKEUG Newsletter Feb 1987 page 70O

0f course if you need to point to a base page address something more
elaborate is needed.

The pointer will normally be used to 1locate a data area, but

it could equally well be used as a chaining address or as a jump
vector to select a routine. A short driver program could be called
from the command file to read the code and make alterations

accordingly, leading to the possibility of constructing conditional
command sequences and loops.

Input _redirection
It is not possible to read from disc answers
EINSUB: an optional routine INSUEB Iis provided f¢£

to prompts using
r this purpose.

INSUB diverts CP/M keyboard input reguests To The ubmit file, but
version 1 does not divert MOS function input reguests. This means
that many programs written specifically for the Einstein cannot use
INSUB (Note: COPY is a CP/M program and can be used)

A further restriction with INSUB is that it reduces the
available TPA memory by 2.5Kb. This should not affect programs

directly unless they are a very tight f£it, but a number of CP/M
programs manipulate memory in 2 similar way. For example it should be
possible to call a debugger during a submit run but INSUB could not
be used from within the debugger.

Using INSUB

Your submit editor needs to be able to handle control
characters (usually in the form "M for carriage return, CONTROL-M
will normally put you into the next command). If it does not, the

only alternative 1is to put in something readily recognisable such as
'%' and patch in the appropriate value.

The initial command string must be terminated by the null character
~@. All characters required for input by the program must follow on
directly after the null. Do not insert any spaces unless they are
expected by the program.

Distinguish carefully between single character input which
is read immediately it is typed, and string input which is not
read until it is terminated. String input must be terminated by "M
in the command file, which is converted to carriage-return in the
submit file (but not written to the input buffer). Do not add a
line-feed as it will be read by the next input regquest. The 1last
input character for the program is followed by a carriage-
return (ENTER) which is interpreted as end-of-command and not written
to the submit file.

Example:
CcCOPY~@l:prog.* TO 3:<V>"MYNY(Q:*.COM TO 3:<V>"MA"M

Note here that if any files are locked and you have not allowed for
this the input will get out of phase (use SHIFT-BREAK to start
again). Note also the final ~“M is required here to exit from the
program's '*' prompt. It is simpler to split up the command using the
alternative format for COPY:

COPY 1l:prog.* TO 3:<V>"@YNY

COPY 0:*.com to 3:<V>7@A

Function 11 (Console Status) presents some problems. The
logical reply during a submit run is zero (no character waiting at
keyboard) and this works in most cases. However some programs use the
function to wait until function 6 can return a character, so a Zero
value returned would cause an indefinite wait. Comments please from
anyone with programs of this kind.

c.P. Wallis oct 1986

UKEUG Newsletter Feb 1987 rage 7 1

PATCH FOR INSTALLATION OF EINSUB
Options - see EINSUB.DOC
+++ (A) Not required when Insub is installed
£££ (B) Warm-boot from silicon disc
*** (C) Makes ERA skip request for confirmation

DOS_ 1.31 DOS 1.11
Original Hodified
Original Kodified
ELOC 34 30 FA BI0C 32 D4 FA
EI0F FE 04 E10F D6 3R EI5F FF E15F AF
BI11 CA 03 B6 B111 32 08 B3 - E160 32 08 B3
E1l4 3B 01 E115 28 4D - B163 3105 EA
Ell6 BT E116 31 FP EBC s B166 21 ¥6 EA
B117 D3 23 - R169 n
BI19 D3 ! B119 D3 2 v E16A AF
E11B C3 El 00 E11B C3 DF 00 Vi E16B ED 67
-- - E16D 58
B163 FF B163 31 1C BB ‘s E16R "
- B166 21 3D BB ‘s E16F CD 00 B4
E169 n - E172 0E 0D
EL6A AF i B4 CD 05 00
E16B ED 67 o BT CD 72 B4
E16D 58 - E17A C3 DC BS
B16RB Lt
BL6F Ch 43 B4 B200 EF FF FF t++ B200 C3 11 EC
E172 BB OD e
E174 €D 05 00 B300 C3 C9 BS 300 C3 63 Bl
E1T7 CD BS Bd B303 C3 C5EB5 303 C3 5F Bl
» E1TA CIIABE e
-- E5C5 AP B5CH JAFDRA
B200 PP FP FFP t+t B200 C3 11 BC E5C6 32 08 B3 E5C8 B7
-- ESCY 31 D5 EA E5CY 28 18
B300 C3 07 B6 £303 C3 63 Bl ESCC €5 E5CB AP
-- E5CD 179 B5CC 3D
B603 AR E603 JAFDRA ESCE 1F E5CD 18 17
E604 32 08 B3 B606 B7 E5CF 1F B5CP FF FF
B60T 31 1C EB E607 28 18 ESDO 1F
E60A (5 E609 AF ESD1 IF
B6OB 179 E60A 3D E5D2 R6 OF B5D1 IR
R60C IF EB60B 18 17 ESD4 5P B5D4 B7
E60D 1IF 60D FF FF ESD5 CD 00 B4 ESDS CA 39 B
E60B 1F E5DS OR 0D E5D8 Fl
B6OF 1P ESDA €D 05 00 B5D9 C3 28 B8
E610 R6 OF E60F INFD FA ESDD Cl
E612 5P E612 B7 B5DE 19
E613 CD 43 B4 B613 CA 1C B4 E5DF E6 OF
B616 0E 0D E616 Fl ESE1 32 F6 EA
E618 CD 05 00 E617 3 6C B8 E5E4 CD 75 Bd
E61B Cl ESBT 3A 08 B3 ESDC 31 08 B3
E6IC 19 ESEA BT E5DF B7
E61D E6 OF ESEB 20 09 E5D0 20 14
E6IF 32 3D BB E5R2 IAFD A
B622 CD B8 Ed B5BS B7
B625 31 08 B3 B61A A 08 B3 ESED 31 D5 EA R5E6 3105 kA
E628 BT E61D B7 E9BY 20 05
B629 20 09 E61E 20 14 E5EB CD OF BB
E62B 31 1C BB E620 JAFD FA 3113 18 09
E623 BT
E624 31 1C BB E6B8 C3 ED ES E6BS C3 C5 BS
R627 WO
B629 CD 56 EB E810 CD B8 B3 ttt g810 CD D1 ES

E62C 18 09

UKEUG Newsletter Feb 1987 page 72

RAB2 (3 BD ES RAB C3 B2 ES
R6PS €3 2B &6 B6PS C3 03 BE eeemoeeeeeeeeeeeeesoeoee
-- FACL AF B0 45
B852 CD 1C B4 ttt B2 CD OF B PACL 47 BCL D
-- FAC? ¥ FAC2 3B 00 EEE 3B 03
BAP C3 2B B6 BAFS €320 B6 FAC3 CF M BACE CP A
-- PACS 21 04 00 RACE 21 04 00
FAD] AR P2 S FACE TR ey TR
FAD3 47 PAD3 D FACS PR 04 21 S)
PADL AP AL 3B 00 EEE 3B 03 --emeooeeeoomoemmmoeeeeeeeeoo
FADS CP M PAD6 CP M FAFD CFP R 00
FAD] D 6A FA FADS CD 6A FA PAFE CF CF FFT PR RR
FADA TR 2 |
FADB PR 04 PADC BD
RARD 57 PARD 00
FAFE 09 0 FPAPE PR FF

MODULA-2

My first program on the Einstein was written in BASIC, and it ran out
of memory when it was half completed. My second program was in C and
it ran out of disc before it was finished. Even on mainframes, the
same precblem occurs because of the need to service other users
promptly, but it is mitigated by the ability to set up programs
consisting of a number of object files, only a few of which are in
use at any one stage. Why not have a system 1like this on the
Einstein? I have been searching for software which makes wuse of
this modularity principle, not only on space grounds but also because
it simplifies testing and handling of programs. The language which is
used is immaterial as 1long as it provides the features required,
but Modula-2 implementations must be contenders because the language
is designed to make use of modularity.

The reasons for <choosing a modern computer language are
concerned more with the use of your programs than with the
actual writing. Firstly, maintenance (i.e. making alterations after

you have forgotten how the program works) is much easier; secondly
portability 1is greatly improved (fewer changes when your Einstein
wears out) and thirdly there should be more scope for maximising
the space available for data. Most languages allow for the
required facilities: what makes the difference is how the software
implements them. I shall therefore concentrate on the way that the
implementations work rather than on the language.

Modula-2 is an extension of Pascal and anyone who has used
Pascal should have no difficulty 1in taking up Modula-2. If not,
then an introductory textbook is essential. Modula-2 1is designed
specifically to implement the wuse of short procedures (about 1 page
on average) which can not only be built wup into programs but can also
be saved in libraries for use in other programs.

Compilers

There are now two Modula-2 compilers available for the Einstein

at prices well below the wusual CP/M ‘'only '200'. The bhasic
requirements are two drives and an intention to write 1longer
programs (an 80-column screen 1is desirable but not essential
initially). These implementations, which have appeared within the _
last year, are FTL Modula-2 and Borland Turbo Modula-2. FTL provides i
the source code of most of the system and occupies both sides of
three discs. You need two working system discs since the full set of
system files occupies more than two sides but you can minimise

disc switchina by careful grouping. Borland supplies an integrated

UKEUG Newsletter Felb 1987 page 7 AR |

package with no system source code which can all be fitted
comfortably on one side of a disc. The package includes its own
operating system, modeled on the UCSD p-system, but lacking in
style. The menu looks like a Wordstar file seen with DISP, presumably
to back up Borland's advice to learn to skip the menu. The only
redeaming feature of the operating system is a neat 1I/0 redirection
mechanism which is in any case part of the language. (Redirection
means that when the program is expecting to read from the
keyboard or write to the screen, you can make it use a file by means
of an additional command line string). '

The difference of approach in the two implementations is illustrated
by the manuals. Borland provides 500 pages of print as small as you
expect to find on the bottom line of a copy protection contract. The
FTL manual has 200 pages of print the size of Borland's chapter
headings. The cause of this disparity is that Borland gives a

detailed specification of each system procedure and variable,
while FTL refers you to the source code. As a result you have to
keep piles of printout beside your FTL manual. Borland's manual

starts with a short introduction, but then becomes formal and throws
you in at the deep end with "a digit is an element that can be
combined with other digits to form a number that 1is an element
at a different 1level of abstraction". If you know what this means,
stop reading, go and get Borland's package - it's what you have
been waiting for. The FTL manual is much more chatty and
concentrates on explaining the difficult bits that are glossed over by
Borland. In spite of this, FTL provides a clear picture of
the system-dependent 1limitations, while the only limit admitted by
Borland is a maximum of 16 elements in a set (which rules out the
well-used "IF ch 1IN {'A'..'Z2'}"),

Both packages provide screen editors with Wordstar-style

commands which return to the corresponding line of the source file
when errors are found. The FTL editor is clearly superior and it has
a neat menu, but it does not 1like the Einstein's inverse video

toggle - I shall have to put in a Boolean to keep a check for it. The
FTL editor also allows you to edit 2 (or 3) files at once (very
useful for switching a procedure into another module) and it
provides for command repetition and command strings (macros).

FTL follows Wirth's standard for Modula-2 quite closely (at
least as far as single user micros are concerned) and has only a few
minor extensions. It allows only one library, which does not
include .SYM files, and you will quickly build up masses of files
requiring very careful organisation. Borland provides for user-
defined libraries to hold both types of object file (.MCD and .SYM)
which keep your discs much tidier. This is a major improvement: the
only other software which does this adeqgately is UCSD p-system and
Borland has produced a more convenient procedure for calling modules
from libraries. In addition you can compile either to M-code or to
self-contained .COM files or to .COM files with overlays (FTL only
produces self-contained .COM files).

Overlays
The 1last point needs some elaboration. Many earlier compilers have
made use of intermediate codes which are run by 1interpreters. For

example BCPL is a language which compiles to O-code and provides a
high degree of modularity (although at the expense of omitting many
important features). The O-code is very compact (much shorter than
machine code), but runs more slowly since the code has to be
interpreted. However it is considerably taster than BASIC.
Intermediate code is also relocatable (i.e it does not contain any
absolute program addresses) and can be 1loaded and moved anywhere
in the available memory. It is therefore the usual method for

UKEUG Newsletter Fel 1987 page 7 4

implementing dynamic overlays, where parts of the program are read
from disc only when needed, and parked anywhere in available memory.
Nevada Pascal provides a neat implementation of this, again at the
expense of important facilities. UCSD p-system is the only complete
implementation of dynamic overlays, with a correspondingly complex
calling structure. I am still 1looking for an implementation of
dynamic overlays in machine code. Pascal MT+ provided a blunderbuss
implementation of static overlays in machine c¢ode, by specifying
the overlay address in the linker command tail. Borland has now
organised this approach and you only need to specify the name of the
module which can be overwritten while the overlay module 1is in use.
This is clearly a rather inflexible arrangement, but overlays
are the only way to increase the available data space unless you move
on to hardware expansion.

Extensions

Neither package provides much help with debugging. FTL exhorts you
to fill the source code with write statements, but does at
least have an interface for a 'do-it-yourself' debugger. FTL also
provides a number of utility programs such as Gaussian pivoting
for solving equations. Borland provides LONGINTEGERs (4 bytes)
Pascal-type I/0 and introduces exceptions. In standard Modula-2 and
in FTL if a system procedurc £ails for some reason (e.g. no file,
string too long) a Boolean wvariable is usually set and can be tested
on return. This means incorporating numerous tests for wunlikely
(but not impossible) situations into the no-error path. Borland has
borrowed the idea of exceptions from Adz (so the answer to your next
question is 'yes').

S

If there is only one error condition it is simple to
incorporate statements such as
REPEAT

ReadInt (i);

UNTIL Done;
and the meaning is intuitive. Anyone who has tried to write a wuser-
friendly program to input assorted information will know that
testing for numerous errors at different levels, which have to be
returned to different restarl points, using the standard method (a
number for each error) can easily become both lengthy and
complicated, and this slows down the correct response. The use of
exceptions not only formalises the return codes by naming each error
and providing specific instructions for use at each level but also
removes any further tests from the normal program path. An exception

is actually only a label 1in a case statement inserted at the end
of a procedure, and a RAISE statement (= GOTO ON ERR) jumps to the
exception when the error occurs. The coding of single errors gets
a little tedious, but there are 5 error conditions in the

FILES module alone, and using exceptions does simplify organising
the return codes. You can of course define your own exceptions if you
still feel like it. We shall be hearing more of exceptions because
Ada, 1like UCSD p-system is having an influence out of proportion to
the number of users.

I have not said a great deal about FTL, because it is a basic

system which you can add to or adapt for your own purposes. It is a
hacker's program written for hackers: if your favourite disc is full
of patches, vyou will enjoy FTL. In contrast Borland's package
is written by professionals for professionals who want to get on
with the Jjob without messing about: if your favourite disc 1is a
straight copy of the distribution disc you should c<¢hoose Borland.
Sources: If your local dealer says "Is that a database?", try CGrey
Matter, Ashburton.

C.P. WALLIS February 1987.

Scorpio Software announces

UlKEDC Newslaelter (Feb 1987 pasicge g

Ekkkkkkk¥X AMSCOPY **X*xkkx%k

Version 2.0
1s program enables discs from an Amstrad 6128 or 8256 to be read by
e Einstein and automatically copied onto Einstein discs in standard

a1y

oo

Einstein format.The normal Einstein operating system is wused. No
additional software or hardware is required . Operation is simplicity
itself - simply insert the disc into the default drive and type

AMSCOPY. You are asked to specify which drive will be used for the
Amstrad disc and which drive will recieve the copied files, thereafter
the process is totally automatic . The program tests for the recording
tormat of the Amstrad disc . There is no requirement to specify the
format of the Amstrad disc . Single disc drive machines can be used
but there will be the inevitable disc changing to perform.

It is believed that most CP/M 2.2 software copied in this way will run
on the Einstein as well as some CP/M Plus software . Please note that
AMSCOPY will NOT cope with Amstrad 'protected ! programs .

If the copied software does not have an Install program then it will
probably be necessary to run it using the Amstrad Emulator. Indeed you
will probably find that the keyboard and screen handling will be
superior when wusing the Emulator . This is certainly the case with
Wordstar which was used for testing the Emulator (80 col only) .

NOTE: NON STANDARD CP/M PROGRAMS COPIED FROM AN AMSTRAD ARE MOST
UNLIKELY TO RUN ON THE EINSTEIN (eg games).

A wide range of Amstrad CP/M software has been copied and run
successfully on the Einstein

kkkkkkkkkkx AMRUN ***kk%k%x%k%%

THE AMSTRAD EMULATOR PROGRAM (80 col only)

Versiton 2.0 This is the high speed version . The Einstein screen
handling has been re-written and operates in RAM. This in itself gives
an increase in speed but the code is for 80 column only which also
gives a considerable gain in speed. This version also includes a
keyboard buffer which eliminates any possibility of 1lost characters
when typing at speed

AMSCOPY is used to copy CP/M programs from Amstrad 6128 and 8256

discs. This program enables the copied Amstrad programs to run on the
Einstein without making any alterations of any kind.

L@ USE"

Type: - AMRUN FILE1.COM FILE2.TYP

where FILE1.COM 1is the copied Amstrad program and FILE2.TYP is the
name of a second file IF this is required.
E.qg. AMRUN WORDPRO.COM EDITFLE.DOC
If there is no requirement for a second file then type: -
AMRUN PROGRAM.COM

No further action is required to use AMRUN.
(N.B most CP/M 2.2 programs and some CP/M plus programs copied from
Amstrad 6128 discs , in either Data or System format , will run on the
Einstein using AMRUN)
The disc containing AMSCOPY2 and AMRUN costs £24.95 total, from

B & H Ltd.,

Bank Top Works,

Southowram,

Halifax,

Yorkshire.

Tel (0422) 52905

™ &

H

= e and software to UKEUG members.

=

Ltd. give a discount of 10% on Amscopy and on certain other items of

As you can see from the front page the running of the group has now
changed hands. Mike Smallman and myself, Graham Bettany, are now in
the hotseats. It was intended that the first magazine produced by us
would be the June issue but due to many and varied reasons the
UG B E T newsletter was somewhat behind time and we will start from
July. I may 1live to regret this but we will not be late!!

We shall be calling the newsletter Einstein Monthly as of July, and
as we have just enough members now to use a professional printers you
should have no problems with the print quality. We do need more
members for the group so do tell other users of our existence if you
can. The monthly competitions will start next month,y, first prize will
be a Tatung 4 band radio and there will be some runner up pPrizes.
Screens, B+H, and Mike bayliss have agreed to sponsor the competitions
and also take part in a National Exhibition later this year, similar
to the one held last November. If you have any ideas on how the
competition should be run please send them in, it is no mean task to
set a competition that is interesting.

We are at present sorting the Public Domain software and will have
a complete list in the first issue of Einstein Monthly. If you have
any programs that we could use to expand the library then please send
them in. We want programs writen in any language; I'm sure you have
composed something. Einstein Monthly will have a section for ONELINERS
so please send any oneline programs you have written, the best
entry will receive a disc containing most of the U.K.E.U.G. programs

that have been published in the past issuses.

A disc copy of each magazine’s programs is available for 5 pounds
if we supply the discy, or = pounds if you send a disc. Packcopies of
the newsletter can be had for 1 pound 25 pence, including postage.

I'm sure you’re bored of being told but we do need your input to
produce a worthwhile magarsine, so do send in anything that could help,
articles, questions, comments, wants, swaps etc,etc

Membership enquiries - Letters, articlesy, comments:i-—
SRS ES UG UK E UGG,
GRAHAM BETTANY MIKE SMALLMAN
80 DALES ROAD 7 SHEEPEN PLACE
IPSWICH COlL CHESTER
SUFFOLK ESSEX
IP1 4JR CcO03 3LD

Tel: 0473 49507 Tel: 0206 540540

IMPORTANT: IF YOU REQUIRE A PERSONAL REPLY YOU MUST ENCLOSE A S5.A.E.

