
 281

 Appendix

Completing the Lunar
Lander Application
As you’ve gone through the book, I’ve slowly been contributing toward your Lunar
Lander game where it has made sense. I haven’t completed it, though, and this is
deliberate. Where would be the fun in providing you with the finished game?! The
knowledge you’ve gained through the book in iOS, its SDK, and Xcode will allow you to
complete the game and publish it—or you may want to start a completely different
game.

However, it wouldn’t be fair to leave you hanging, so in this appendix I discuss some of
the elements you may want to consider adding to the game. The source code
associated with the book includes code fragments that complement this chapter to help
you complete your game.

Implementing the Game Physics
To ensure that your lander observes the laws of physics, you need to implement a
simple physics engine for it. You can find a reference describing the physics required at
www.physicsclassroom.com/class/newtlaws/u2l4a.cfm. Don’t worry; I take you through
the basics next.

Gravity
This simulation is quite simple. First the forces of gravity are applied:

Y = Y + Gravity * TotaleSecondsOfThrust;

Here the Y value that controls the lander’s height is adjusted by multiplying the Gravity
figure (a double value of 9.8) by the number of seconds that thrust is applied, calculated
by detecting the timestamp when the thrust key is held down, and the seconds elapsed
from when it is released. You can use the NSTimeInterval() method to achieve this.

APPENDIX: Completing the Lunar Lander Application 282

Thrust
You then need to apply the force of the thrust according to thrust and rotation. You
need to use the Math.h include for this, but you have to implement your own angle-
normalization macro, because the equivalent of NormalizeAngle() in .NET doesn’t exist
in Objective-C. No matter, it’s easily done. First define this macro:

#define NormalizeAngle(x) ((return x % 360)+(x < 0 ? 360 : 0))

Then adjust your x and x axis according to the force of thrust:

Y = Y – Math.sin(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;
X = X – Math.cos(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;

The variable rotation obviously represents the angle of rotation for the lander, as
affected by the user pressing the left and right keys and the totalseconds values (the
number of seconds the thrust key is held down). The thrustspeed value is a constant
value of 20 indicating how powerful the thrust is.

Finally, don’t forget to reduce your fuel figure as the engine is thrusting.

Rotation
You won’t cover rotating both left and right because they mirror each other. Let’s look at
what you need to do to rotate left. This method does of course assume the existence of
a fuel tank, initialized with an initial value (here the value 1000) and that you pass the
total number of seconds the rotation key was held down. Your method looks as follows:

// rotateLeft - rotate the lander left
- (void)rotateLeft:(float) totalseconds
{
 // You can't thrust if you've no fuel
 if (fuel <0)
 return;

 // Rotate left
 rotationMomentum -= M_PI / 2.0f * totalseconds;

 // Burn fuel
 fuel -= 0.5 // fuel burn evey time you thrust
}

The obvious difference for rotating right is that you increase the rototationMomentum
value rather than decrease it.

Enabling User Interaction
The user is obviously required to interact with the game, although how you do this is up
to you. Some options are to detect keypresses, or use onscreen images to detect a tap,
or even use the accelerometer to detect the device being tipped left or right. In any
case, you need to interpret the actions, and the following keys are used to interact with

APPENDIX: Completing the Lunar Lander Application 283

the lander. Doing nothing simply lets the lander drop to the ground as gravity is applied.
For your lander, you do the following.

� If the up arrow is pressed, onscreen or on the keyboard, the thruster is
being fired.

� If the left arrow is pressed, onscreen or on the keyboard, the lander is
rotating left.

� If the right arrow is pressed, onscreen or on the keyboard, the lander is
rotating right.

Catching Game Events
You need to monitor some additional game events: for example, detecting when you hit
the ground and the speed at which you hit. This is fairly straightforward using a
combination of lunar lander y position and ground height and using the speed of the
lander as an indicator of whether you’re moving too fast.

The method only works when the ground is flat. If you decide to implement a Moon
surface that has different gradients, you need to detect this in your game—maybe
looking at the pixel values surrounding the lander.

Handling the Graphics
Your Lunar Lander implementation has already made provision to draw the graphics for
the game by implementing the drawRect method, although the default implementation
simply draws the same graphic (the nonthrusting lander) at the x and y location.

You need to adjust this code to be representative of the other states, including when the
game is running, looking for when it should be thrusting or just dropping, and drawing at
the angle appropriate for the lander. The angle is obviously in relation to the rotate-left or
-right keypresses.

To rotate your image, you could use the rotateAt() method in Microsoft .NET, but such
a method doesn’t exist in Objective-C. Instead, you can use a simple macro to convert
between degrees and radians, the measure used by the UImage rotate equivalent called
transform. First define a macro something like the following:

#define degreesToRadians(x) (M_PI * (x) / 180.0)

Then add the following line, assuming the deg variable represents the degrees you wish
to rotate by:

myView.transform = CGAffineTransformMakeRotation(degreesToRadians(deg));

If you’re interested in knowing more, the post at
www.platinumball.net/blog/2010/01/31/iphone-uiimage-rotation-and-scaling/ has a
lot of detail about how to do image rotation and scaling.

APPENDIX: Completing the Lunar Lander Application 284

Displaying a High Score
This should be straightforward because you covered how to create high-score code in
Chapter 8, and you also looked at different mechanisms for displaying a dynamic user
interface in Chapter 6. Combining these with the high-score mechanics of your game
allows you to create a high-score chart that can be displayed when the game is at the
main menu.

Resources
In addition to the information provided in this appendix to help you complete the Lunar
Lander game, and the additional code supplied with the book, the following resources
may help you complete and/or customize your game:

� PhET Lunar Lander: A number of resources including an online version
of the game, provided as part of a teaching aid.
http://phet.colorado.edu/en/simulation/lunar-lander.

� LunarView.java: A Java-based implementation of the Lunar Lander
game for the Android mobile device.
http://developer.android.com/resources/samples/LunarLander/src/
com/example/android/lunarlander/LunarView.html.

� Code Project: A .NET-based implementation of the Lunar Lander
game, written in C#.
http://www.codeproject.com/KB/game/lunarlander.aspx.

� History of Lunar Lander: Wikipedia’s history of the Lunar Lander game.
http://en.wikipedia.org/wiki/Lunar_Lander_(video_game).

 285

Index

■ A
Accelerate Framework

(Accelerate.framework), 96
Accelerometer class, 273
accelerometers, 271–273
action sheets, 185
Active Server Pages (ASP), 92
activity indicator, and progress

indicator, 174–175
ADC (Apple Developer Connection), 4,

11
add() method, 226
Add Repository option, 32
addHighScoreEntry, 199–203
addObject method, 190–191, 199–200
Address Book UI

(AddressBookUI.framework), 93
AddressBook

(AddressBook.framework), 94
Adhoc mechanism, publishing via,

253–254
Adhoc method, 260
Adobe Flash Professional Creative

Studio 5 platform, 21–22
alert sheet, 185
alerts, 184–185
alloc() method, 36–37, 40, 46
API limits, 5
App Design Strategies, 30
App Store

platform, 22–25
selling apps at, 23–24
submitting apps to, 24–25

publishing via, 254–259
preparing for submission,

254–256

uploading application binary,
256–259

Appcelerator Titanium Mobile platform,
18–19, 69–75

Hello, World application using,
70–75

installing, 69–70
Apple

components, application
development using, 10–13

platforms and technologies, 7–13
application development using

Apple components, 10–13
iOS, 9–10
terminology and concepts used

by, 7–9
Apple Developer Agreement, 209,

218–219, 221
Apple Developer Connection (ADC), 4,

11
Apple Developers, registering as, 2–4
Apple Operating System. See iOS
Apple resources, on UIs, 185–186
application home directory, 89
Application Loader, 256–257
Application object, 82
application sandbox, 89
application types, and associated view

controllers, 154–157
navigation-based applications,

156–157
tab bar-based applications, 155–156
utility-based applications, 154–155

applicationDidBecomeActive method,
86–87

Index 286

applicationDidEnterBackground
method, 87

ApplicationID, 89
applications, 81–83, 223–260

.NET Framework comparison, 93–94
behaviors in, 88–89

and application sandbox, 89
multitasking, 89
orientation changes, 88

debugging
capturing diagnostics with NSLog

command, 232
profiling applications, 233–237
with simulator, 237–239
Xcode 4 debugger, 229–231

deploying, 240–252
creating certificate to sign

application, 241–242
Provisioning Portal feature,

244–250
registering device, 243–244

design considerations, 82
design patterns, 82–83
developing, resources on, 259–260
development of

native applications, 6–7
using Apple components, 10–13
web applications, 6

initializing, 45–47
life cycle of, 85–86
managing data within, 189–191
navigation-based, and associated

view controllers, 156–157
profiling, 233–237
publishing, 253–259

resources on, 259–260
via Adhoc mechanism, 253–254
via App Store, 254–259

selling at App Store platform, 23–24
states of, 86–87
submitting to App Store platform,

24–25
tab bar-based

and associated view controllers,
155–156

implementing, 157–163

testing, 223–229
on devices, 239–240
resources on, 259–260
unit, 224–229

uploading binary, 256–259
utility-based, and associated view

controllers, 154–155
Applications folder, 63, 65, 69, 77
applicationWillEnterForeground

method, 87
applicationWillResignActive method, 87
ARC (automatic reference counting), 40,

54–56
ASP (Active Server Pages), 92
assemblies, in .NET framework,

217–218
Attribute Inspector, 108
automatic reference counting (ARC), 40,

54–56
AV Foundation

(AVFoundation.framework), 94

■ B
bbitem IBOUTLET, 168
behaviors, 88–89

and application sandbox, 89
multitasking, 89
orientation changes, 88

bespoke methods, 139, 141, 143
binary, applications, 256–259
Block objects, 83
build folder, 73
Build Phases tab, 193
Builder file, 44, 268, 276
Button class, 177

■ C
C# class, 100
C# interface, 100
Calculator class, 226
CalculatorTest.m file, 229
cameras, 266–267

basics of, 266–267
example application for, 267–271

Index 287

updated features in iOS 5, 279–280
cameraViewController, 269
Cascading Style Sheets (CSS), 10
certificates, creating to sign application,

241–242
CFNetwork (CFNetwork.framework), 94
CGRect, 135, 140
CIL (Common Intermediate Language),

15
Class class, 136
class keyword, 100
classes, in Objective-C, 38–39, 97
CLLocation class, 262–265
CLLocation parameter, 262
CLLocationManagerDelegate, 262–263
Close() method, 128
CLR (Common Language Runtime), 40
Cocoa Touch, 7–8, 10, 12, 14–15
code completion, in IDE workspace,

107
code snippets, in XCode 4, 111
collection classes, 190–191
comments, in Objective-C, 104
common controls, 178
Common Intermediate Language (CIL), 15
Common Language Runtime (CLR), 40
Connections Inspector, 108
constants, self-documenting code, 137
constraints, for third-party tools, 57–58
content views, 180–183

table, 180–181
text, 181–182
web, 182–183

controllers, specific to iPad, 163–174
Popover view, 163–171
split-view, 171–174

controls, 174–185
action sheets, 185
activity and progress indicators,

174–175
alerts, 184–185
common, 178
content views, 180–183

table, 180–181
text, 181–182
web, 182–183

date and time and general pickers,
175–176

detail disclosure button, 176
info button, 176–177
navigation and information bars,

179–180
navigation, 180
status, 179
toolbar, 179

page indicator, 177
search bar, 177
segmented, 178
switch, 177

Core Data (CoreData.framework), 95
Core Graphics

(CoreGraphics.framework), 94
Core Mono component, 14–15
Core OS, 10
Core Services, 7, 10, 13, 94
Core Telephony

(CoreTelephony.framework), 95
Core Text (CoreText.framework), 94
CoreData.framework (Core Data), 95
CoreGraphic.framework, 94, 214
CoreTelephony.framework (Core

Telephony), 95
CoreText.framework (Core Text), 94
createTabGroup() method, 73
CS (Creative Studio), 21–22
CSS (Cascading Style Sheets), 10

■ D
databases

connecting to, 197
iOS-embedded, 192–197

creating or opening database,
194

creating table in database, 195
reading data from database,

196–197
SDK options for, 193–194
writing data to database,

195–196
DataView control, 181

Index 288

date and time picker, and general
pickers, 175–176

DateTimePicker class, 175
dealloc() method, 52, 54–55, 122, 125
deallocate memory, 270
Debug area view, 110
Debug-iphoneos folder, 213
Debug-iphonesimulator, 213
debugging

capturing diagnostics with NSLog
command, 232

profiling applications, 233–237
with simulator, 237–239

changing device, 238
changing iOS version, 238
Home feature, 239
Lock feature, 239
Simulate Hardware Keyboard

feature, 239
simulating movement, 238
Toggle In-Call Status Bar feature,

239
triggering low memory, 238
TV Out feature, 239

Xcode 4 debugger, 229–231
Debug.WriteLine, 232
Declare class, 129
delegation, 83, 96, 103–104
deploying, 240–252

creating certificate to sign
application, 241–242

Provisioning Portal feature, 244–250
registering device, 243–244

design, application
considerations, 82
patterns, 5, 82–83

desiredAccuracy property, 263
detail disclosure button, 176
developing, resources on, 259–260
device compatibility, 5
devices

changing in simulator, 238
form factor, example applications

using, 147–149
orientation of, supporting, 150–154

platforms and, constraints for,
146–154

registering, 243–244
targeting multiple with code,

276–277
testing on, 239–240

diagnostics, capturing with NSLog
command, 232

didAccelerate method, 273
didFailWithError, 262–263
didFinishLaunchingWithOptions()

method, 48, 86, 122
didFinishPickingMediaWithInfo method,

269
DidLoad event, 273
didLoad method, 266
didReceivedMemoryWarning event, 238
didRotateFromInterfaceOrientation, 150
didUpdateToLocation, 262–263
dismissModalViewControllerAnimated,

128, 133
dismissPopoverAnimated, 169–170
displays, size and resolution of,

146–150
example applications using device

form factor, 147–149
points vs. pixels, 149
screen size, 149–150

DragonFire SDK, 2, 16–18
drawRect method, 135, 140, 283
dynamic libraries, 208–209

■ E
Editor area, 48
enabling, ARC, 55
Engine class, 37
Engine example, 39
Engine object, 37
enumerated types, self-documenting

code, 138
Event Kit (EventKit.framework), 95
exception handling, 39–40, 96
External Accessory

(ExternalAccessory.framework),
96

Index 289

■ F
File Inspector, 108
file structure, of projects, 44–45
file system-based storage, using

sandbox, 188–189
FirstView, 161–162
form factor, of devices, example

applications using, 147–149
Foundation.framework, 95, 214
Frameworks, 159
fromInterfaceOrientation, 150–151

■ G
game events, catching, 283
Game interface, 127
Game Kit (GameKit.framework), 93
game states, for Lunar Lander

application, 118
GameDifficulty, 129–130, 138
GameKit.framework (Game Kit), 93
games, implementing physics in,

281–282
gravity, 281
rotation, 282
thrust, 282

GameState, 129–130, 138
GameView class, 120, 126, 128–129,

135–137
GameView header, for Lunar Lander

application, 128–137
GameView interface, 126
GameView object, 137
GameViewController class, 120,

123–126, 128–129, 132
GameViewController property, 125
GameView.h file, 128
GameView.xib file, 138
GDI (Graphics Display Interface), 92
General Public License (GPL), 219
GeoCoordinate class, 265
GeoCoordinateWatcher object, 265
GeoPositionAccuracy property, 265
gesture detection, 274–275

swipes, 275

touch events, 274–275
getter method, 98
Github library, 221
Global Positioning System. See GPS
GPL (General Public License), 219
GPS (Global Positioning System),

261–265
location-based services

implementing, 262–264
overview, 262

uses for, 264–265
graphical user interface (GUI), 145
Graphics Display Interface (GDI), 92
graphics, handling, 283
gravity, 281
GUI (graphical user interface), 145

■ H
hardware requirements, for iOS SDK, 28
header file, 38–39, 45, 48, 51
Hello, World application

using Appcelerator Titanium Mobile
platform, 70–75

using Marmalade SDK, 77–78
using MonoTouch component,

66–68
HelloWorldAppDelegate, 44
HelloWorld.cs file, 61
HelloWorld.exe, 62
HelloWorldViewController, 45, 48–49,

51–52
HellowWorldView.xib file, 68
high-score class, persistent, 197–201

initializing, 203
testing, 201–203

high-score example, 197–203
vs. .NET implementation, 204–205
persistent high-score class, 197–201

initializing, 203
testing, 201–203

high scores, displaying, 284
HighScore class, 199
HighScoreEntry class, 198–201, 203
HighScore.h file, 212, 216
Home feature, of simulator, 239

Index 290

■ I
iAd (iAd.framework), 92
IBAction property, 123, 126, 128–129,

167, 169
IBOutlet property, 51–52, 167
iCloud applications, 277–278
Icon file, 252
icon.png file, 252
ID type, 102
IDE (integrated development

environment), 7, 9, 29
IDE workspace, 106–108

code completion in, 107
project editor, 108
schemes, 107–108

Identity Inspector, 108
Image file, 12
Image I/O (ImageIO.framework), 94
Image property, 267
ImageIO.framework (Image I/O), 94
iMessage service, iOS 5, 279
Implementation file, 45, 226
info button, 176–177
Info.plist file, 85–86, 179
information bars, navigation bars and,

179–180
initializing

application, 45–47
views, 48–53

initWithParameters method, 198–199,
201, 203

Insert() method, 204
Inspector pane, 48
inspectors, in XCode 4, 108
installing, iOS SDK, 30–35
integrated development environment

(IDE), 7, 9, 29
integration testing, 225
Interface Builder, 12, 47–48
interface controls, 153, 174, 178, 186
interfaces, 82, 84, 88, 91–92, 96–97,

100–103
Internet-aware table, 220
Internet, using to store data, 192
iOS (Apple Operating System), 9–10,

278–280

changing version in simulator, 238
iMessage service, 279
integrated Twitter service capability,

279
libraries, vs. .NET framework

libraries, 209–210
Newsstand application, 279
Notification Center feature, 278–279
Reminders application, 279
SDK, 12–13
updated features, 279–280

iOS Dev Center, 3, 8
iOS Developer, 3–4, 10
iOS-embedded databases

creating or opening, 194
creating table in, 195
reading data from, 196–197
SDK options for, 193–194
writing data to, 195–196

iOS Human Interface Guidelines, 30,
115

iOS SDK, 27–56
ARC, 54–56

enabling, 55
migrating to, 55
overview, 55
programming with, 55

creating user interface, 47–53
initializing view, 48–53
using Interface Builder, 47–48

hardware requirements for, 28
initializing application, 45–47
installing, 30–35
Objective-C, 35–40

classes in, 38–39
exception handling, 39–40
importing, 38
memory management, 40
naming conventions, 38
object model, 36–37
square brackets, 37–38
terminology for, 36

projects in
creating, 41–44
file structure of, 44–45

resources for, 30

Index 291

Xcode, new features for, 29
iOS user-interface controls, 115
iPad

controllers specific to, 163–174
Popover view, 163–171
split-view, 171–174

targeting multiple devices with code,
276–277

iPhone, targeting multiple devices with
code, 276–277

ISerializable class, 190
iTunes Connect, 254–257, 259–260

■ J
jailbreaking, 24

■ K
kCLLocationAccuracyBest, 263–264
kUTTypeImage, 266, 268–269
kUTTypeMovie, 266

■ L
Label (UILabel), 178
lander_nothrust property, 130, 134–135,

139–140
Lander.tiff, 139
last-in-first-out (LIFO), 157
libraries, 207–221

Apple Developer Agreement,
218–219

definition of, 208
dynamic, 208–209
iOS vs. .NET framework, 209–210
static, 208–218

assemblies in .NET framework,
217–218

with Xcode 4 tool, 210–217
third-party, 219–221

categories of, 219
Github library, 221
list of useful, 220
SourceForge library, 221

types of, 208

Library pane, 48, 50
libsqlite3.dylib library, 193, 209, 217
licensing, 5
life cycle, of applications, 85–86
LIFO (last-in-first-out), 157
linker, 208
LLVM compiler, 107
loadRequest, 182–183
Localizable.string file, 100
location-based services, implementing,

262–264
LocationManager class, 262–264
Lock feature, of simulator, 239
low memory, triggering in simulator, 238
Lunar Lander application, 113–143,

281–284
catching game events, 283
creating project, 119–121
displaying high score, 284
enabling user interaction, 282–283
GameView header, 128–137
handling graphics, 283
implementing game physics,

281–282
gravity, 281
rotation, 282
thrust, 282

implementing navigation, 127–128
initializing XIB resource, 138–140
manually drawing user interface, 140
planning for, 114–118

design resources, 115–116
game states, 118
requirements specification,

116–117
user interfaces, 118

resources for, 284
self-documenting code, 137–138

using constants, 137
using enumerated types, 138

testing, 141–143
user interface, 121–126
using bespoke methods, 141

Lunar Lander graphic, 118
LunarLanderAppDelegate, 119, 122,

124

Index 292

LunarLanderViewController class, 119,
121–124, 126, 128

LunarLanderViewController.xib file, 123,
126

Lunary Lander game, 226

■ M
.m extension, 39
main() method, 45–47
main .nib file, 85
MainViewController.m file, 216
MainWindow.xib file, 44, 48, 85, 119,

161
makeKeyAndVisible, 48–49
Managed memory model, 83
Map Kit (MapKit.framework), 92
Marmalade SDK (Software

Development Kit), 19–21, 75–78
Hello, World application using,

77–78
installing, 75–76

Marmalade Studio, 20, 75–76
Marmalade System, 20, 75–76
Media layer, 10, 94
Media Player (MediaPlayer.framework),

94
MediaLibrary object, 267
MediaPlayer.framework (Media Player),

94
mediaType, 269–270
mediatypes property, 266
memory, low, 238
memory management, 40, 95
message file, 39
Message UI (MessageUI.framework), 92
methods

calling with square brackets, 37
in Objective-C, declaring, 97–98

Microsoft Developer Network (MSDN),
83

Microsoft.Devices.PhotoCamera class,
267

Microsoft.Devices.Sensors namespace,
273

migrating, to ARC, 55

mobile device, 85, 93–95
MobileCoreServices.framework, 267
.mobileprovision file, 253
Model-View-Controller (MVC), 5, 83
Mono environment, 14–16

Core Mono component, 14–15
installing, 59–62
MonoDevelop component, 15–16
MonoTouch component, 15
and MonoTouch component, 58–68

Hello, World application using,
66–68

installing, 59–66
MonoDevelop component

installing, 62–64
overview, 15–16

MonoDroid, 58
MonoMac, 58
MonoTouch component, 15

installing, 64–66
Mono environment and, 58–68

Hello, World application using
MonoTouch component, 66–68

installing, 59–66
Motion class, 273
movement, simulating, 238
MSDN (Microsoft Developer Network),

83
multidevice capable, 277
multitasking, 89, 96
multitaskingSupported property, 89
MVC (Model-View-Controller), 5, 83
MyStaticLibrary, 212

■ N
Name property, 162
naming conventions, for Objective-C,

38
native applications, development of,

6–7
Navigate() method, 183
navigation bars, and information bars,

179–180
navigation, 180
status, 179

Index 293

toolbar, 179
navigation-based applications, and

associated view controllers,
156–157

navigation, for Lunar Lander
application, 127–128

Navigator view, 110
navigators, in XCode 4, 109–110
NDA (nondisclosure agreement), 218
NET control, 156, 178, 265
.NET Framework, 90–96

application services, 93–94
assemblies in, 217–218
libraries, iOS libraries vs., 209–210
runtime services, 95–96
tools for, vs. Xcode tools, 105–106
user-interface services, 91–92

.NET implementation, vs. high-score
example, 204–205

NewGame() method, 130, 132, 134,
139–141

newMediaAvailable, 267–269
Newsstand application, iOS 5, 279
NIB file, 106, 120, 162, 173
Nil object, 35, 37
nondisclosure agreement (NDA), 218
NormalizeAngle() method, 282
Notification Center feature, iOS 5,

278–279
NSArray, 190–191
NSAutoRelease class, 46
NSCachesDirectory, 188
NSClassFromString() method, 277
NSData, 190
NSDate, 190
NSDictionary, 190–191
NSLog command, capturing

diagnostics with, 232
NSLog() method, 109, 196
NSMutableArray, 190–192, 198–200,

203–204
NSMutableMutable class, 190
NSNumber, 190
NSObject, 160
NSSet, 274–275

NSString class, 190, 192, 194, 196–198,
200–203

NSTimeInterval() method, 281
NSTimer class, 128, 135, 143

■ O
Object class, 190
object model, for Objective-C, 36–37
Objective-C, 35–40, 96–104

classes in
declaring, 97
overview, 38–39

comments, 104
delegation, 103–104
exception handling, 39–40
importing, 38
interfaces and protocols, 100–103
memory management, 40
methods in, declaring, 97–98
naming conventions, 38
object model, 36–37
properties, 98–99
square brackets, 37–38

calling methods, 37
passing and retrieving with, 38

strings, 99–100
terminology for, 36

ODBC (Open Database Connectivity),
197, 204

OpenAL and OpenGL ES
(OpenAL.framework), 94

OpenGLES.framework, 94
orientation changes, 88
orientation, of devices, supporting,

150–154

■ P
page indicator, 177
passing the call along the chain, 125
passing, with square brackets, 38
pathForResource method, 134, 139
PDF (Portable Document Format), 277
persistent high-score class, 197–201

initializing, 203

Index 294

testing, 201–203
photos, updated features in iOS 5,

279–280
physics, implementing in games,

281–282
gravity, 281
rotation, 282
thrust, 282

Picker class, 176
Picker control, 115
pickers, date and time and general,

175–176
pixels per inch (PPI), 150
pixels, points vs., 149
planning

for Lunar Lander application,
114–118

design resources, 115–116
game states, 118
requirements specification,

116–117
user interfaces, 118

platforms
and devices, constraints for,

146–154
and technologies, Apple, 7–13

points, vs. pixels, 149
Popover view controllers, 163–171
PopOverExampleViewController, 167
PopoverSelection, 165
PopOverSelection class, 166–167,

169–170
PopOverSelection.h file, 166–167
PopOverSelection.m file, 166
PopOverSelection.xib file, 166
Portable Document Format (PDF), 277
PPI (pixels per inch), 150
presentPopoverFromBarButtonItem,

169–170
profiling applications, 233–237
programming, with ARC, 55
progress indicator, activity indicator

and, 174–175
ProgressBar class, 175
project editor, IDE workspace, 108
project navigator, 109

projects
creating, 41–44
file structure of, 44–45

properties, in Objective-C, 98–99
property lists, using as storage, 191
protocols, in Objective-C, 100–103
Provisioning Portal feature, 244–250
Public class, 101
publishing, 253–259

resources on, 259–260
via Adhoc mechanism, 253–254
via App Store, 254–259

preparing for submission,
254–256

uploading application binary,
256–259

■ Q
Quick Help, 108
quitGame, 128–129, 133, 141
QuitGame() method, 132

■ R
RDBMS (relational database

management system), 192
readHighScores method, 202
registering, device, 243–244
relational database management

system (RDBMS), 192
Reminders application, iOS 5, 279
Remove() method, 204
requirements capture stage, 114
resolution, size and, of displays,

146–150
resources folder, 73
resources, for iOS SDK, 30
retain method, 51–52, 54–55
retrieving, with square brackets, 38
rootViewController, 161, 173–174
rotateAt() method, 283
RotateLeft() method, 129–130,

132–133, 135, 141
RotateRight() method, 129–130,

132–133, 135, 141

Index 295

rotation, 282
Round rect button (UIButton), 178
runtime services, 91, 95–96

■ S
s3dHelloWorld.mkb file, 77
.s3e files, 77
Safari Browser, updated features in iOS

5, 279–280
sandboxes, file system-based storage

using, 188–189
scheduledTimerWithTimeInterval

method, 133, 135–136
Schema-driven object, 193
schemes, IDE workspace, 107–108
Score class, 204
Score table, 181
screens, size of, 149–150
SDKs (Software tools Kits)

completeness, 58
DragonFire, 16–18
iOS, 12–13
Marmalade, 19–21
options for iOS-embedded

databases, 193–194
search bars, 177
SecondView, 161–162
security, 96
Security (Security.framework), 96
segmented controls, 178
SELECT statement, 196, 203
selector parameter, 133, 135–136
self-documenting code, 137–138

using constants, 137
using enumerated types, 138

self.view property, 153
Server database, 197
setNeedsDisplay method, 133, 136–137
setter method, 98
Short Message Service (SMS), 92
ShowDialog() method, 126
signal strength, 239
Simple Object Access Protocol (SOAP),

190

Simulate Hardware Keyboard feature, of
simulator, 239

simulators, debugging with, 237–239
changing device, 238
changing iOS version, 238
Home feature, 239
Lock feature, 239
Simulate Hardware Keyboard

feature, 239
simulating movement, 238
Toggle In-Call Status Bar feature,

239
triggering low memory, 238
TV Out feature, 239

Size Inspector, 108
Slider (UISlider), 178
SMS (Short Message Service), 92
SOAP (Simple Object Access Protocol),

190
Software Development Kit. See SDK
Sort() method, 204
sortArrayUsingSelector method,

203–204
SourceForge library, 221
split-view controllers, 171–174
SplitContainer class, 174
sprintf() method, 232
SQL command, 195
SQL statement, 195–196, 201, 204
SQL (Structured Query Language), 192
SQLite database, 13
sqlite3_bind_text() method, 196
sqlite3_prepare() method, 196,

200–202
sqlite3_step() method, 196
sqlite_open() method, 194
square brackets, 37–38

calling methods, 37
passing and retrieving with, 38

Start Game button, 121, 123, 125–126
Start Touch Down event, 126
startAnimating method, 175
startUpdatingLocation, 262, 264
states, of applications, 86–87
static analysis, in XCode 4, 111

Index 296

static libraries, 208–218
assemblies in .NET framework,

217–218
with Xcode 4 tool, 210–217

statically linked libraries, 208
status bar, 179
StatusBar class, 179
STFail() method, 226
stopUpdatingLocation, 262
storage, 187–205

high-score example, 197–203
vs. .NET implementation,

204–205
persistent high-score class,

197–201
options for data, 188–197

databases, 192–197
file system-based storage using

sandbox, 188–189
Internet, 192
managing within application,

189–191
property lists, 191

Store Kit (StoreKit.framework), 95
strings, in Objective-C, 99–100
Structured Query Language (SQL), 192
Such class, 98
super initWithCoder:aDecoder

command, 139
swipes, detecting, 275
switch control, 177
symbol navigator, 109
synthesizing, 98
System.Collections.Generic.Dictionary

class, 190
System.Date class, 190
System.Device.Location namespace,

265
System.Diagnostics namespace, 232
System.Runtime.Serialization.Formatter

s.Binary, 190
Systems Configuration

(SystemsConfiguration.framework),
95

System.String class, 190
System.Threading.Timer class, 135

■ T
tab bar-based applications

and associated view controllers,
155–156

implementing, 157–163
Tab object, 73
tabBarController property, 160–161
TabBarExample, 158–160
TabBarExampleAppDelegate.h file, 160
TabBarExampleAppDelegate.m file, 161
TabControl, 156
TABLE command, 195
table view, 180–181
tables, creating in database, 195
Target-action, 83
TDD (Test Driven Development),

224–226
technologies, platforms and, 7–13
terminology, for Objective-C, 36
Test & Package option tab, 72
Test Driven Development (TDD),

224–226
testExample() method, 226–228
testing, 223–229

on devices, 239–240
integration, 225
Lunar Lander application, 141–143
persistent high-score class, 201–203
resources on, 259–260
unit, 224–229

defining approach to, 224–226
writing and running, 226–229

TestMethod() method, 217–218
Text field (UITextField), 178
text view, 181–182
third-party libraries, 219–221

categories of, 219
Github library, 221
list of useful, 220
SourceForge library, 221

third-party tools, 5–6, 13–22, 57–78
Adobe Flash Professional Creative

Studio 5 platform, 21–22
Appcelerator Titanium Mobile

platform, 18–19, 69–75

Index 297

Hello, World application using,
70–75

installing, 69–70
constraints, 57–58
DragonFire SDK, 16–18
Marmalade SDK, 19–21, 75–78

Hello, World application using,
77–78

installing, 75–76
Mono environment, 14–16

Core Mono component, 14–15
MonoDevelop component, 15–16
MonoTouch component, 15

Mono environment and MonoTouch
component, 58–68

Hello, World application using,
66–68

installing, 59–66
thrust, 282
Thrust() method, 128–129, 132
thrustEngine, 130, 134–135, 141
ThrusterState, 129–130, 138
thrustspeed value, 282
Titanium Developer icon, 69
Titanium.UI namespace, 73
Toggle In-Call Status Bar feature, of

simulator, 239
togglePopOverController, 167–169
toolbar, 179
Toolbar class, 165, 179
tools

for .NET Framework, vs. Xcode
tools, 105–106

accelerometer, 271–273
App Store platform, 22–25

selling apps at, 23–24
submitting apps to, 24–25

Apple platforms and technologies,
7–13

application development using
Apple components, 10–13

iOS, 9–10
terminology and concepts used

by, 7–9
application development

native, 6–7

web, 6
camera

basics of, 266–267
example application for, 267–271

development principles, 5–6
future directions in, 277–280

iCloud applications, 277–278
iOS 5, 278–280

gesture detection
swipes, 275
touch events, 274–275

GPS, 261–265
location-based services, 262
uses for, 264–265

registering as Apple Developer, 2–4
targeting multiple devices with code,

276–277
third-party options, 13–22

Adobe Flash Professional
Creative Studio 5 platform,
21–22

Appcelerator Titanium Mobile
platform, 18–19

DragonFire SDK, 16–18
Marmalade SDK, 19–21
Mono environment, 14–16

totalseconds value, 282
touch events, detecting, 274–275
touchesBegan method, 274–275
touchesCancelled:withEvent, 274
touchesEnded:withEvent, 274
transform, 283
TV Out feature, of simulator, 239
Twitter service, integrated capability in

iOS 5, 279
type management, 95

■ U
UIAccelerometer class, 272
UIAccelerometerDelegate protocol,

272–273
UIActionSheet class, 185
UIActivityIndicatorView class, 175
UIAlertView class, 184
UIApplication, 179

Index 298

UIApplicationDelegate protocol, 86, 160
UIApplicationMain() function, 46–47, 85
UIButton class, 123, 176
UIButton (Round rect button), 178
UIDatePicker class, 175
UIDevice, 89
UIEvent, 274–275
UIGestureRecognizer class, 274
UIImage variable, 130, 134, 139–140,

236
UIImagePickerController class, 266–270
UIImagePickerController object, 269
UIImagePickerControllerSourceTypePh

otoLibrary, 269
UIImageView control, 268
UIInterfaceOrientation, 150, 153, 169
UIKit (UIKit.framework), 92, 214
UILabel control, 50
UILabel object, 49, 51–52
UImage class, 143
UINavigationBar class, 180
UINavigationController interface, 157
UIPageControl class, 177
UIPopoverController class, 164, 167,

170
UIProgressView class, 175
UIs (User Interfaces), 145–186

Apple resources on, 185–186
application types and associated

view controllers, 154–157
navigation-based applications,

156–157
tab bar-based applications,

155–156
utility-based applications,

154–155
controls, 174–185

action sheets, 185
activity and progress indicators,

174–175
alerts, 184–185
common, 178
content views, 180–183
date and time and general

pickers, 175–176
detail disclosure button, 176

info button, 176–177
navigation and information bars,

179–180
page indicator, 177
search bar, 177
segmented, 178
switch, 177

creating, 47–53
initializing view, 48–53
using Interface Builder, 47–48

implementing tab bar-based
application, 157–163

iPad-specific controllers, 163–174
Popover view, 163–171
split-view, 171–174

for Lunar Lander application,
118–121, 126

manually drawing, 140
platform and device constraints,

146–154
display size and resolution,

146–150
supporting device orientation,

150–154
UISearchBar class, 177
UISegmentedControl class, 178
UISlider (Slider), 178
UISplitViewController class, 172–173
UIStatusBarHidden, 179
UIStatusBarStyle, 179
UISwitch class, 177
UITabBarController class, 156, 161
UITabBarController interface, 157
UITabController class, 161
UITabControllerDelegate protocol, 160
UITableView class, 180
UITableViewController class, 156, 165,

170
UITextField (Text field), 178
UITextView class, 181
UIToolbar class, 179
UITouch, 274–275
UIView class, 136, 274–275
UIViewController class, 120, 123, 129,

267, 273–275
UIWebView class, 182

Index 299

UIWindow object, 48
unit testing, 224–229

defining approach to, 224–226
integration testing, 225
TDD, 225–226

writing and running, 226–229
updateInterval property, 272–273
UpdateLander() method, 131–132, 137
useCamera method, 267–268
user interaction, enabling, 282–283
user-Interface guidelines, 115
user-interface services, .NET

Framework comparison, 91–92
User Interfaces. See UIs
UTCoreTypes.h file, 267
UTF8String method, 194, 196, 200
Utilities view, 110
utility-based applications, and

associated view controllers,
154–155

■ V
view controllers, associated with

application types, 154–157
navigation-based, 156–157
tab bar-based, 155–156
utility-based, 154–155

ViewController class, 68, 135–136
viewControllers array, 48, 173–174, 273
viewDidLoad event, 124, 132–133, 135,

169–170, 182
ViewDidLoad() method, 52, 68
viewDidUnload method, 169–170
views

initializing, 48–53
in XCode 4, 110

visibility modifier, 125

■ W
WAP (Wireless Access Protocol), 91
web applications, development of, 6

web view, 182–183
WebBrowser class, 183
Windows Forms, 82, 90, 92–93
Windows method, 112
Windows Presentation Foundation

(WPF), 90
Wireless Access Protocol (WAP), 91
World Wide Developer Conference

(WWDC), 277
WPF (Windows Presentation

Foundation), 90
writeToFile method, 191, 198
writeToURL method, 192
WWDC (World Wide Developer

Conference), 277

■ X, Y, Z
XCode 4, 106–112

code snippets, 111
debugger, 229–231
IDE workspace, 106–108

code completion in, 107
project editor, 108
schemes, 107–108

inspectors, 108
navigators, 109–110
static analysis, 111
static libraries with, 210–217
views in, 110

Xcode interface, 106, 109
Xcode tools

new features for, 29
overview, 11–12
vs. tools for .NET Framework,

105–106
XIB file, 108, 121, 126, 128, 136, 138,

166
XIB resource, initializing, 138–140
XML file, 85, 191, 204
XMLSerializer class, 204

	Appendix Completing the Lunar Lander Application
	Implementing the Game Physics
	Gravity
	Thrust
	Rotation

	Enabling User Interaction
	Catching Game Events
	Handling the Graphics
	Displaying a High Score
	Resources

	Index

