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   Appendix 

Completing the Lunar 
Lander Application 
As you’ve gone through the book, I’ve slowly been contributing toward your Lunar 
Lander game where it has made sense. I haven’t completed it, though, and this is 
deliberate. Where would be the fun in providing you with the finished game?! The 
knowledge you’ve gained through the book in iOS, its SDK, and Xcode will allow you to 
complete the game and publish it—or you may want to start a completely different 
game. 

However, it wouldn’t be fair to leave you hanging, so in this appendix I discuss some of 
the elements you may want to consider adding to the game. The source code 
associated with the book includes code fragments that complement this chapter to help 
you complete your game. 

Implementing the Game Physics 
To ensure that your lander observes the laws of physics, you need to implement a 
simple physics engine for it. You can find a reference describing the physics required at 
www.physicsclassroom.com/class/newtlaws/u2l4a.cfm. Don’t worry; I take you through 
the basics next. 

Gravity 
This simulation is quite simple. First the forces of gravity are applied: 

Y = Y + Gravity * TotaleSecondsOfThrust; 

Here the Y value that controls the lander’s height is adjusted by multiplying the Gravity 
figure (a double value of 9.8) by the number of seconds that thrust is applied, calculated 
by detecting the timestamp when the thrust key is held down, and the seconds elapsed 
from when it is released. You can use the NSTimeInterval() method to achieve this. 

 



APPENDIX:  Completing the Lunar Lander Application 282 

Thrust 
You then need to apply the force of the thrust according to thrust and rotation. You 
need to use the Math.h include for this, but you have to implement your own angle-
normalization macro, because the equivalent of NormalizeAngle() in .NET doesn’t exist 
in Objective-C. No matter, it’s easily done. First define this macro: 

#define NormalizeAngle(x) ((return x % 360)+(x < 0 ? 360 : 0)) 

Then adjust your x and x axis according to the force of thrust: 

Y = Y – Math.sin(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;   
X = X – Math.cos(NormalizeAngle(rotation + M_PI / 2)) * totalseconds * thrustspeed;   

The variable rotation obviously represents the angle of rotation for the lander, as 
affected by the user pressing the left and right keys and the totalseconds values (the 
number of seconds the thrust key is held down). The thrustspeed value is a constant 
value of 20 indicating how powerful the thrust is. 

Finally, don’t forget to reduce your fuel figure as the engine is thrusting. 

Rotation 
You won’t cover rotating both left and right because they mirror each other. Let’s look at 
what you need to do to rotate left. This method does of course assume the existence of 
a fuel tank, initialized with an initial value (here the value 1000) and that you pass the 
total number of seconds the rotation key was held down. Your method looks as follows: 

// rotateLeft - rotate the lander left 
- (void)rotateLeft:(float) totalseconds 
{ 
    // You can't thrust if you've no fuel 
    if (fuel <0) 
        return;  
 
    // Rotate left 
    rotationMomentum -= M_PI / 2.0f * totalseconds; 
 
    // Burn fuel 
    fuel -= 0.5 // fuel burn evey time you thrust 
}     

The obvious difference for rotating right is that you increase the rototationMomentum 
value rather than decrease it. 

Enabling User Interaction 
The user is obviously required to interact with the game, although how you do this is up 
to you. Some options are to detect keypresses, or use onscreen images to detect a tap, 
or even use the accelerometer to detect the device being tipped left or right. In any 
case, you need to interpret the actions, and the following keys are used to interact with 
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the lander. Doing nothing simply lets the lander drop to the ground as gravity is applied. 
For your lander, you do the following. 

� If the up arrow is pressed, onscreen or on the keyboard, the thruster is 
being fired. 

� If the left arrow is pressed, onscreen or on the keyboard, the lander is 
rotating left. 

� If the right arrow is pressed, onscreen or on the keyboard, the lander is 
rotating right. 

Catching Game Events 
You need to monitor some additional game events: for example, detecting when you hit 
the ground and the speed at which you hit. This is fairly straightforward using a 
combination of lunar lander y position and ground height and using the speed of the 
lander as an indicator of whether you’re moving too fast. 

The method only works when the ground is flat. If you decide to implement a Moon 
surface that has different gradients, you need to detect this in your game—maybe 
looking at the pixel values surrounding the lander.  

Handling the Graphics 
Your Lunar Lander implementation has already made provision to draw the graphics for 
the game by implementing the drawRect method, although the default implementation 
simply draws the same graphic (the nonthrusting lander) at the x and y location. 

You need to adjust this code to be representative of the other states, including when the 
game is running, looking for when it should be thrusting or just dropping, and drawing at 
the angle appropriate for the lander. The angle is obviously in relation to the rotate-left or 
-right keypresses. 

To rotate your image, you could use the rotateAt() method in Microsoft .NET, but such 
a method doesn’t exist in Objective-C. Instead, you can use a simple macro to convert 
between degrees and radians, the measure used by the UImage rotate equivalent called 
transform. First define a macro something like the following: 

#define degreesToRadians(x) (M_PI * (x) / 180.0) 

Then add the following line, assuming the deg variable represents the degrees you wish 
to rotate by: 

myView.transform = CGAffineTransformMakeRotation(degreesToRadians(deg) ); 

If you’re interested in knowing more, the post at 
www.platinumball.net/blog/2010/01/31/iphone-uiimage-rotation-and-scaling/ has a 
lot of detail about how to do image rotation and scaling. 
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Displaying a High Score 
This should be straightforward because you covered how to create high-score code in 
Chapter 8, and you also looked at different mechanisms for displaying a dynamic user 
interface in Chapter 6. Combining these with the high-score mechanics of your game 
allows you to create a high-score chart that can be displayed when the game is at the 
main menu. 

Resources 
In addition to the information provided in this appendix to help you complete the Lunar 
Lander game, and the additional code supplied with the book, the following resources 
may help you complete and/or customize your game: 

� PhET Lunar Lander: A number of resources including an online version 
of the game, provided as part of a teaching aid. 
http://phet.colorado.edu/en/simulation/lunar-lander. 

� LunarView.java: A Java-based implementation of the Lunar Lander 
game for the Android mobile device. 
http://developer.android.com/resources/samples/LunarLander/src/
com/example/android/lunarlander/LunarView.html. 

� Code Project: A .NET-based implementation of the Lunar Lander 
game, written in C#. 
http://www.codeproject.com/KB/game/lunarlander.aspx. 

� History of Lunar Lander: Wikipedia’s history of the Lunar Lander game. 
http://en.wikipedia.org/wiki/Lunar_Lander_(video_game). 
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exception handling, 39–40 
importing, 38 
interfaces and protocols, 100–103 
memory management, 40 
methods in, declaring, 97–98 
naming conventions, 38 
object model, 36–37 
properties, 98–99 
square brackets, 37–38 

calling methods, 37 
passing and retrieving with, 38 

strings, 99–100 
terminology for, 36 

ODBC (Open Database Connectivity), 
197, 204 

OpenAL and OpenGL ES 
(OpenAL.framework), 94 

OpenGLES.framework, 94 
orientation changes, 88 
orientation, of devices, supporting,  

150–154 

■ P 
page indicator, 177 
passing the call along the chain, 125 
passing, with square brackets, 38 
pathForResource method, 134, 139 
PDF (Portable Document Format), 277 
persistent high-score class, 197–201 

initializing, 203 
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testing, 201–203 
photos, updated features in iOS 5,  

279–280 
physics, implementing in games,  

281–282 
gravity, 281 
rotation, 282 
thrust, 282 

Picker class, 176 
Picker control, 115 
pickers, date and time and general, 

175–176 
pixels per inch (PPI), 150 
pixels, points vs., 149 
planning 

for Lunar Lander application,  
114–118 

design resources, 115–116 
game states, 118 
requirements specification,  

116–117 
user interfaces, 118 

platforms 
and devices, constraints for,  

146–154 
and technologies, Apple, 7–13 

points, vs. pixels, 149 
Popover view controllers, 163–171 
PopOverExampleViewController, 167 
PopoverSelection, 165 
PopOverSelection class, 166–167,  

169–170 
PopOverSelection.h file, 166–167 
PopOverSelection.m file, 166 
PopOverSelection.xib file, 166 
Portable Document Format (PDF), 277 
PPI (pixels per inch), 150 
presentPopoverFromBarButtonItem, 

169–170 
profiling applications, 233–237 
programming, with ARC, 55 
progress indicator, activity indicator 

and, 174–175 
ProgressBar class, 175 
project editor, IDE workspace, 108 
project navigator, 109 

projects 
creating, 41–44 
file structure of, 44–45 

properties, in Objective-C, 98–99 
property lists, using as storage, 191 
protocols, in Objective-C, 100–103 
Provisioning Portal feature, 244–250 
Public class, 101 
publishing, 253–259 

resources on, 259–260 
via Adhoc mechanism, 253–254 
via App Store, 254–259 

preparing for submission,  
254–256 

uploading application binary, 
256–259 

■ Q 
Quick Help, 108 
quitGame, 128–129, 133, 141 
QuitGame( ) method, 132 

■ R 
RDBMS (relational database 

management system), 192 
readHighScores method, 202 
registering, device, 243–244 
relational database management 

system (RDBMS), 192 
Reminders application, iOS 5, 279 
Remove( ) method, 204 
requirements capture stage, 114 
resolution, size and, of displays,  

146–150 
resources folder, 73 
resources, for iOS SDK, 30 
retain method, 51–52, 54–55 
retrieving, with square brackets, 38 
rootViewController, 161, 173–174 
rotateAt( ) method, 283 
RotateLeft( ) method, 129–130,  

132–133, 135, 141 
RotateRight( ) method, 129–130,  

132–133, 135, 141 
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rotation, 282 
Round rect button (UIButton), 178 
runtime services, 91, 95–96 

■ S 
s3dHelloWorld.mkb file, 77 
.s3e files, 77 
Safari Browser, updated features in iOS 

5, 279–280 
sandboxes, file system-based storage 

using, 188–189 
scheduledTimerWithTimeInterval 

method, 133, 135–136 
Schema-driven object, 193 
schemes, IDE workspace, 107–108 
Score class, 204 
Score table, 181 
screens, size of, 149–150 
SDKs (Software tools Kits) 

completeness, 58 
DragonFire, 16–18 
iOS, 12–13 
Marmalade, 19–21 
options for iOS-embedded 

databases, 193–194 
search bars, 177 
SecondView, 161–162 
security, 96 
Security (Security.framework), 96 
segmented controls, 178 
SELECT statement, 196, 203 
selector parameter, 133, 135–136 
self-documenting code, 137–138 

using constants, 137 
using enumerated types, 138 

self.view property, 153 
Server database, 197 
setNeedsDisplay method, 133, 136–137 
setter method, 98 
Short Message Service (SMS), 92 
ShowDialog( ) method, 126 
signal strength, 239 
Simple Object Access Protocol (SOAP), 

190 

Simulate Hardware Keyboard feature, of 
simulator, 239 

simulators, debugging with, 237–239 
changing device, 238 
changing iOS version, 238 
Home feature, 239 
Lock feature, 239 
Simulate Hardware Keyboard 

feature, 239 
simulating movement, 238 
Toggle In-Call Status Bar feature, 

239 
triggering low memory, 238 
TV Out feature, 239 

Size Inspector, 108 
Slider (UISlider), 178 
SMS (Short Message Service), 92 
SOAP (Simple Object Access Protocol), 

190 
Software Development Kit. See SDK 
Sort( ) method, 204 
sortArrayUsingSelector method,  

203–204 
SourceForge library, 221 
split-view controllers, 171–174 
SplitContainer class, 174 
sprintf( ) method, 232 
SQL command, 195 
SQL statement, 195–196, 201, 204 
SQL (Structured Query Language), 192 
SQLite database, 13 
sqlite3_bind_text( ) method, 196 
sqlite3_prepare( ) method, 196,  

200–202 
sqlite3_step( ) method, 196 
sqlite_open( ) method, 194 
square brackets, 37–38 

calling methods, 37 
passing and retrieving with, 38 

Start Game button, 121, 123, 125–126 
Start Touch Down event, 126 
startAnimating method, 175 
startUpdatingLocation, 262, 264 
states, of applications, 86–87 
static analysis, in XCode 4, 111 
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static libraries, 208–218 
assemblies in .NET framework, 

217–218 
with Xcode 4 tool, 210–217 

statically linked libraries, 208 
status bar, 179 
StatusBar class, 179 
STFail( ) method, 226 
stopUpdatingLocation, 262 
storage, 187–205 

high-score example, 197–203 
vs. .NET implementation,  

204–205 
persistent high-score class,  

197–201 
options for data, 188–197 

databases, 192–197 
file system-based storage using 

sandbox, 188–189 
Internet, 192 
managing within application, 

189–191 
property lists, 191 

Store Kit (StoreKit.framework), 95 
strings, in Objective-C, 99–100 
Structured Query Language (SQL), 192 
Such class, 98 
super initWithCoder:aDecoder 

command, 139 
swipes, detecting, 275 
switch control, 177 
symbol navigator, 109 
synthesizing, 98 
System.Collections.Generic.Dictionary 

class, 190 
System.Date class, 190 
System.Device.Location namespace, 

265 
System.Diagnostics namespace, 232 
System.Runtime.Serialization.Formatter

s.Binary, 190 
Systems Configuration 

(SystemsConfiguration.framework), 
95 

System.String class, 190 
System.Threading.Timer class, 135 

■ T 
tab bar-based applications 

and associated view controllers, 
155–156 

implementing, 157–163 
Tab object, 73 
tabBarController property, 160–161 
TabBarExample, 158–160 
TabBarExampleAppDelegate.h file, 160 
TabBarExampleAppDelegate.m file, 161 
TabControl, 156 
TABLE command, 195 
table view, 180–181 
tables, creating in database, 195 
Target-action, 83 
TDD (Test Driven Development),  

224–226 
technologies, platforms and, 7–13 
terminology, for Objective-C, 36 
Test & Package option tab, 72 
Test Driven Development (TDD),  

224–226 
testExample( ) method, 226–228 
testing, 223–229 

on devices, 239–240 
integration, 225 
Lunar Lander application, 141–143 
persistent high-score class, 201–203 
resources on, 259–260 
unit, 224–229 

defining approach to, 224–226 
writing and running, 226–229 

TestMethod( ) method, 217–218 
Text field (UITextField), 178 
text view, 181–182 
third-party libraries, 219–221 

categories of, 219 
Github library, 221 
list of useful, 220 
SourceForge library, 221 

third-party tools, 5–6, 13–22, 57–78 
Adobe Flash Professional Creative 

Studio 5 platform, 21–22 
Appcelerator Titanium Mobile 

platform, 18–19, 69–75 
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Hello, World application using, 
70–75 

installing, 69–70 
constraints, 57–58 
DragonFire SDK, 16–18 
Marmalade SDK, 19–21, 75–78 

Hello, World application using, 
77–78 

installing, 75–76 
Mono environment, 14–16 

Core Mono component, 14–15 
MonoDevelop component, 15–16 
MonoTouch component, 15 

Mono environment and MonoTouch 
component, 58–68 

Hello, World application using, 
66–68 

installing, 59–66 
thrust, 282 
Thrust( ) method, 128–129, 132 
thrustEngine, 130, 134–135, 141 
ThrusterState, 129–130, 138 
thrustspeed value, 282 
Titanium Developer icon, 69 
Titanium.UI namespace, 73 
Toggle In-Call Status Bar feature, of 

simulator, 239 
togglePopOverController, 167–169 
toolbar, 179 
Toolbar class, 165, 179 
tools 

for .NET Framework, vs. Xcode 
tools, 105–106 

accelerometer, 271–273 
App Store platform, 22–25 

selling apps at, 23–24 
submitting apps to, 24–25 

Apple platforms and technologies, 
7–13 

application development using 
Apple components, 10–13 

iOS, 9–10 
terminology and concepts used 

by, 7–9 
application development 

native, 6–7 

web, 6 
camera 

basics of, 266–267 
example application for, 267–271 

development principles, 5–6 
future directions in, 277–280 

iCloud applications, 277–278 
iOS 5, 278–280 

gesture detection 
swipes, 275 
touch events, 274–275 

GPS, 261–265 
location-based services, 262 
uses for, 264–265 

registering as Apple Developer, 2–4 
targeting multiple devices with code, 

276–277 
third-party options, 13–22 

Adobe Flash Professional 
Creative Studio 5 platform,  
21–22 

Appcelerator Titanium Mobile 
platform, 18–19 

DragonFire SDK, 16–18 
Marmalade SDK, 19–21 
Mono environment, 14–16 

totalseconds value, 282 
touch events, detecting, 274–275 
touchesBegan method, 274–275 
touchesCancelled:withEvent, 274 
touchesEnded:withEvent, 274 
transform, 283 
TV Out feature, of simulator, 239 
Twitter service, integrated capability in 

iOS 5, 279 
type management, 95 

■ U 
UIAccelerometer class, 272 
UIAccelerometerDelegate protocol, 

272–273 
UIActionSheet class, 185 
UIActivityIndicatorView class, 175 
UIAlertView class, 184 
UIApplication, 179 
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UIApplicationDelegate protocol, 86, 160 
UIApplicationMain( ) function, 46–47, 85 
UIButton class, 123, 176 
UIButton (Round rect button), 178 
UIDatePicker class, 175 
UIDevice, 89 
UIEvent, 274–275 
UIGestureRecognizer class, 274 
UIImage variable, 130, 134, 139–140, 

236 
UIImagePickerController class, 266–270 
UIImagePickerController object, 269 
UIImagePickerControllerSourceTypePh

otoLibrary, 269 
UIImageView control, 268 
UIInterfaceOrientation, 150, 153, 169 
UIKit (UIKit.framework), 92, 214 
UILabel control, 50 
UILabel object, 49, 51–52 
UImage class, 143 
UINavigationBar class, 180 
UINavigationController interface, 157 
UIPageControl class, 177 
UIPopoverController class, 164, 167, 

170 
UIProgressView class, 175 
UIs (User Interfaces), 145–186 

Apple resources on, 185–186 
application types and associated 

view controllers, 154–157 
navigation-based applications, 

156–157 
tab bar-based applications,  

155–156 
utility-based applications,  

154–155 
controls, 174–185 

action sheets, 185 
activity and progress indicators, 

174–175 
alerts, 184–185 
common, 178 
content views, 180–183 
date and time and general 

pickers, 175–176 
detail disclosure button, 176 

info button, 176–177 
navigation and information bars, 

179–180 
page indicator, 177 
search bar, 177 
segmented, 178 
switch, 177 

creating, 47–53 
initializing view, 48–53 
using Interface Builder, 47–48 

implementing tab bar-based 
application, 157–163 

iPad-specific controllers, 163–174 
Popover view, 163–171 
split-view, 171–174 

for Lunar Lander application,  
118–121, 126 

manually drawing, 140 
platform and device constraints, 

146–154 
display size and resolution,  

146–150 
supporting device orientation, 

150–154 
UISearchBar class, 177 
UISegmentedControl class, 178 
UISlider (Slider), 178 
UISplitViewController class, 172–173 
UIStatusBarHidden, 179 
UIStatusBarStyle, 179 
UISwitch class, 177 
UITabBarController class, 156, 161 
UITabBarController interface, 157 
UITabController class, 161 
UITabControllerDelegate protocol, 160 
UITableView class, 180 
UITableViewController class, 156, 165, 

170 
UITextField (Text field), 178 
UITextView class, 181 
UIToolbar class, 179 
UITouch, 274–275 
UIView class, 136, 274–275 
UIViewController class, 120, 123, 129, 

267, 273–275 
UIWebView class, 182 
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UIWindow object, 48 
unit testing, 224–229 

defining approach to, 224–226 
integration testing, 225 
TDD, 225–226 

writing and running, 226–229 
updateInterval property, 272–273 
UpdateLander( ) method, 131–132, 137 
useCamera method, 267–268 
user interaction, enabling, 282–283 
user-Interface guidelines, 115 
user-interface services, .NET 

Framework comparison, 91–92 
User Interfaces. See UIs 
UTCoreTypes.h file, 267 
UTF8String method, 194, 196, 200 
Utilities view, 110 
utility-based applications, and 

associated view controllers, 
154–155 

■ V 
view controllers, associated with 

application types, 154–157 
navigation-based, 156–157 
tab bar-based, 155–156 
utility-based, 154–155 

ViewController class, 68, 135–136 
viewControllers array, 48, 173–174, 273 
viewDidLoad event, 124, 132–133, 135, 

169–170, 182 
ViewDidLoad( ) method, 52, 68 
viewDidUnload method, 169–170 
views 

initializing, 48–53 
in XCode 4, 110 

visibility modifier, 125 

■ W 
WAP (Wireless Access Protocol), 91 
web applications, development of, 6 

web view, 182–183 
WebBrowser class, 183 
Windows Forms, 82, 90, 92–93 
Windows method, 112 
Windows Presentation Foundation 

(WPF), 90 
Wireless Access Protocol (WAP), 91 
World Wide Developer Conference 

(WWDC), 277 
WPF (Windows Presentation 

Foundation), 90 
writeToFile method, 191, 198 
writeToURL method, 192 
WWDC (World Wide Developer 

Conference), 277 

■ X, Y, Z 
XCode 4, 106–112 

code snippets, 111 
debugger, 229–231 
IDE workspace, 106–108 

code completion in, 107 
project editor, 108 
schemes, 107–108 

inspectors, 108 
navigators, 109–110 
static analysis, 111 
static libraries with, 210–217 
views in, 110 

Xcode interface, 106, 109 
Xcode tools 

new features for, 29 
overview, 11–12 
vs. tools for .NET Framework,  

105–106 
XIB file, 108, 121, 126, 128, 136, 138, 

166 
XIB resource, initializing, 138–140 
XML file, 85, 191, 204 
XMLSerializer class, 204 
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